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We study global entangling properties of the system of coupled kicked tops testing various hypotheses and
predictions concerning entanglement in quantum chaotic systems. In order to analyze the averaged initial
entanglement production rate and the averaged asymptotic entanglement, various ensembles of initial product
states are evolved. Two different ensembles with natural probability distribution are considered: product states
of independent spin-coherent states and product states of random states. It appears that the choice of either of
these ensembles results in significantly different averaged entanglement behavior. We investigate also a relation
between the averaged asymptotic entanglement and the mean entanglement of eigenvectors of the evolution
operator. Lower bound on the averaged asymptotic entanglement is derived, expressed in terms of the eigen-
vector entanglement.
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[. INTRODUCTION correlation function than the Lyapunov exponent itself that
determines the entanglement production rate. Strong chaos is
Looking for quantum signatures of the classical transitionable to destroy the time correlations even on a very short
from regular to chaotic dynamics is the field of quantumtime. scale and thus it diminishes initial entanglement pro-
chaos[1,2]. Recently it was suggestg8,4] that entangle- duction rate. _ _
ment production in a quantum system can be a good indica- Apart from studying the entanglement production rate,
tor of the regular to chaotic transition in its classical coun-Which is a quantity calculated from a short-time behavior of
terpart. the evolved state, one can also stqdy asymptotic properties of
In both of the invoked studief8,4] it was observed that entanglement, i.e., those appearing in the long-time limit.

the presence of chaos enhances the rate at which an initia'¢ duestion whether the asymptotic value of entanglement
IS related to chaos was posed it?]. If the coupling strength

between kicked tops is large enough to observe the saturation
Bf entanglement within a given time, the asymptotic value of

kicked top s a thoroughly studied model in the ql4amumentanglement is higher the greater is the chaos paraiftieter
chaos literature. Depending on the strength of kicks its clasg;q strength. This observation was made starting with an

sical dynamics is either regular or chaotic. Miller and Sarkafnitial state in the form of a product of two spin-coherent
studied a system consisting of two identical kicked tops Withstates placed in a region which for low kick strengths was
an additional weak interaction between them. The Strength %gu'ar, Contained a part Of a Separatrix for Stronger kiCkS,
kicks was chosen in such a way that the classical phase spagfid eventually became chaotic for very strong kicks.
of a single top was mixe(tonsisted both of regular toriand  |n the present paper we also concentrate on the case of
chaotic regions Two tops were initially in a product state of coupled kicked tops. In most of the previous studies the at-
two spin-coherent states. The reason for this choice is thagntion was focused on analyzing how an initial product state
spin-coherent states have a good classical limit, that gives @f certain spin-coherent states evolves in time. Here we
chance to relate the classical phase space picture to the quameuld like to address a more general problem. Namely, how
tum description. The spin-coherent state of the first top wasloes the strength of chaos influence the global entangling
chosen to lie in a chaotic region while the spin-coherent statproperties of the evolution of the kicked tops? By global we
of the second one was varied from a regular to a chaotienean properties not depending on a specific choice of initial
region. The system was then evolved and it was observegroduct state. In other words this is the question of whether
that the rate of entanglement incredsgeasured as the von the entangling capabilities of the transformation depend on
Neumann entropy of the reduced density matviis higher the strength of chaos. Global entangling properties were ana-
when the second top was placed in a chaotic region. Moré&zed in the kicked Ising spin chain modd], where evolu-
guantitatively, it was shown that for different quantum initial tion of random states was investigated, and decrease of en-
states the rate of entanglement increase was proportional tanglement production rate with the increase of chaos was
the sum of two positive Lyapunov exponents calculated forobserved.
the corresponding classical distribution of initial points. Another approach often uséd3] in determining the en-
These results supported the claim about close relation beangling power of an operation consists of analyzing its
tween chaotic behavior of classical systems and entanglingigenvectors. In the case of periodically driven systems these
properties of their quantum versions. are the eigenvectors of a unitary operdtbcorresponding to
Further investigations revealed, however, that there is nthe one-period evolution. The degree of eigenvector en-
such direct relation between chaos and entanglefferitl].  tanglement is then regarded as an information about entan-
In particular it was observed that it is rather a specific timegling properties of the evolution. We show that the informa-
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tion about entanglement of eigenvectors does not, however, p1:= Tro(p) = [, (2.3

give the full picture of entanglement properties of the evolu-

tion, but only a rough estimate of the asymptotic behavior ofwhereas the same procedure applied to an entangled state

entanglement of evolved statésee Sec. VI A produces necessarily a genuine mixed state. This observation
In order to discuss entangling properties of the evolutiorcan be further quantified by calculating the linear entropy for

of the kicked tops, we evolve not a single product state, buthe reduced density matrix

a whole ensemble of random product states, chosen uni-

formly with respect to action of S(d;)® SU(d,) group, S := 1—Tr(p§), (2.4

whered;, d, are the Hilbert space dimensions of the two

tops. We calculate the averaged asymptotic entanglement apich vanishes for product states and reaches the maximal

proached by evolved states, and the initial rate of entanglesalue:

ment production. All pure states are treated on equal footing

here. Spin coherent states are as good as any other pure state. S"™*=1-1d, (2.5
This way of averaging gives us information abdlu¢ entan-
gling power of evolutionas defined irf14]. whered=min(d;,d,) is the Hilbert space dimension of the

Additionally we shall calculate the entanglement produc-smaller subsystem, for the “maximally entangled stat®?
tion when initial states are products of two spin-coherenidefinition this is the state which reduces to the “maximally
states, where each spin-coherent state, parametrized by twgixed” state of a subsystem—the latter is characterized by a
spherical angle®, ¢, is taken independently from the en- diagonal density matrix with equal entrjesn this sens&is
semble with uniform probability density on the unit sphere.a measure of entanglement for pure states of a composite
The two ways of averaging give qualitatively different re- system.
sults. We shall analyze the results with the help of the per- Another often used measure of entanglement for pure
turbative approacti7,10] and the analysis of the entangle- states is the von Neumann entropy of the reduced density

ment of eigenvectors. matrix:
The observation that is worth mentioning here is that even
in a very regular regim¢he entangling poweis extremely Sn=-Tr(py 10, py). (2.6)

high—higher than in chaotic cases—both when discussing
the asymptotic entanglement behavior and the initial enfor product stateS, =0, as the reduced density matfixis
tanglement production rate. also pure, while for the maximally entangled states the von
Our results are another step to reveal the relation betweeQeumann entropy of the reduced density matrix takes the
chaotic vs regular motion and entanglement production. highest valuesia*=log, d. Contrary to the linear entropy, the
above measure of entanglement has a nice operational mean-
Il. ENTANGLEMENT ing in terms of the number of maximally entangled states
that can be distilled from a given number of nonmaximally
Entanglement is a purely quantum phenomenon, dividingntangled statei 6].
states of a composite quantum system into two classes: those Actually all quantities which do not increase under local
which can be written as products of some states of{ihve  operations(i.e., operations acting separately in each sub-

in this casg subsystems: system and classical communication quantify in some way
the amount of entanglement present in a state. These in gen-
W) =) ® |y, (2.1)  eral are callecntanglement monotongk?]. Linear and von

Neumann entropy discussed above are examples of such en-
called product states, and all others which cannot be writtetanglement monotones for pure states.

in the form (2.1 but instead involve a genuine, nontrivial  In the following we shall use the linear entrof®.4) as
linear combination the measure of entanglement. We choose this measure, in-
stead of the von Neumann entro(®:6), as linear entropy is

¥y =>, Ci | i) ® | (2.2  easier to calculate and there is a perturbative formula for
ij initial growth of linear entropy 7,10 in weakly coupled sys-
tems which we shall use. Furthermore, in the investigations
The definition above applies only when one deals with pureconcerning relation between chaos and entanglement, where
states. The notion of entanglement for mixed states is morboth von Neumann and linear entropy were calculated
subtle[15], and it is very difficult in general to determine [7,12,1§ no qualitative difference in the behavior of the two
whether a given mixed state is entangled or not. In this papeawas found, thus the choice of either of them is not crucial.
the state of the composite quantum system we consider is It is argued that the presence of entanglement is important
always pure. in many novel applications of quantum information process-
For a given pure stat@V’) it is easy to check whether it is ing [19], which explains the prominence enjoyed by this phe-
entangled or not. Observe that if the state is a product oneyomenon in many recent investigations. In our study we
averaging over one of the subsystems of the correspondinghall concentrate only on the interplay between production of
density matrixp=|¥)(¥| gives a pure state of the remaining entanglement in a composite quantum system and its chaotic
subsystem: properties.
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ll. COUPLED KICKED TOPS common eigenstate af, and J? with the eigenvaluesn=j

The kicked top is a paradigmatic model for studying@ndi(i+1), respectively by unitary rotations

quantum chaos in finite-dimensional Hilbert spaf2. It is ) o ) 0
a particle with the total spifand the dynamics generated by 16,4y = (1 +| DT W) j), y=€? tanz, (3.4
the Hamiltonian

o and the above described procedure leads to the following
H=pJ,+ 25\]5 > st-n). (3.1 classical mapping:
Vo X' =Z cogkX) + Y sin(kX),
HereJ, andJ, are the components of the angular momentum
operator fulfilling the standard commutation relations Y’ =-2Zsin(kX) +Y cogkX),
[Jy,J,]=idy, etc. The time dependence takes the form of an
infinite train of delta-shaped pulsé%icks”) perturbing the Z'=-X. (3.5

free rotation periodically in time. The quantitipsandk are _ _ ) L .
adjustable parameters of the model. The latter, called th& detailed analysis of the classical dynam(8sd) is given in
kick strength, is scaled by the total sgin-observe that the [20], let us only summarize that the system is integrable for
total angular momentumJZ:J§+J§+J§ is conserved, k=0 and becomes visibly chaotic whiep-2. Fork around 3
[J2,H]=0, hence we can investigate the dynamics of thehe phase space exhibits well developed mixed structure with

model for each value of independently, restricting the dis- €W regular islands embedded in the chaotic see. \When
cussion to the appropriatg(2j+ 1) X (2j+1)]-dimensional =~ 6 islands of stability, although present, are very small and

space. To exhibit various interesting dynamical aspects of thif1e chaos can be r:reate_d as fuI_Iy developed for alrl1 practiﬁal
model it is enough to change one of the parameters. In thBUrPOSEs. From the ‘point of view of quantum chaos, the
following we putp=/2 and varyk. islands are negligible if their phase-space area is smaller than

The unitary time evolution operator transporting the wavelne effective value of the Planck constaftj in our casg,

function of the kicked top in time over one period of the which will be the case in our _Calculatlons._ . .
perturbation In order to achieve our ultimate goal, i.e., the investiga-

tion of parallels between chaos and entanglement we follow

_ ko T the idea of Miller and Sarkad] and consider two coupled
U= ex;< I2j Jz)exp< ! 2‘]y>’ (3.2 kicked tops with the Hamiltonian

generates the Heisenberg equations of motion for the angular H=H;+Hy+H,, (3.6)

momentum operatord, Jy, andJ, whereH; andH, are the Hamiltonians of independent kicked

J, = Ut u= %( J,+i Jy)e‘i(k/j)(Jx_llz) +H.c., tops(3.1) expressed in terms of the operatd;§ Jyl,le and
Jiyidy, 1z, pertaining to each individual top, whereldsis a

, 1 IO nonlinear coupling term
J=ulu= (- *id)e R s K

€
Hi==3,3, > at-n). (3.7
J,=uTju=-J, (3.3 J n=—c
giving the operatord}, J/, andJ, at timet=n+1 in terms of The procedure of obtaining the classical evolution equations
their predecessor, Jy, yandJZ at timet=n. is exactly the same as the one for a single top described

As in all studies of quantum chaotic phenomena we aré@bove, and yield$12]
ultimately interested in comparing quantum and classical dy-
namics of the model. In the present the Planck constant has
been set to unity hence the classical limit correspondg to
—oo limit (“large quantum numbers” More formally one
defines the quantitieX, Y, andZ as averages aol,/j, J,/],

Xi = Zl COSA]_Q + Yl sin A121

Yi == Zl sin A12 + Yl COSAlz,

andJ,/j calculated in the initial state of the system. In com- Z ==Xy,

paring classical and quantum behavior it is reasonable to take

as an initial state some minimum uncertainty state, in belief X5=27,C0SAp1 + Y, SiNA,,

that (at least in the largg limit) the evolution of averages

will be well represented by the single classical trajectory Y} == Z,SiNAp; + Y, COSAyy,

starting from the point in the phase space around which the

initial quantum state of minimal uncertainty is concentrated. Z)=-Xo, (3.9

Obviously, there is no particular reason to distinguish such

states when investigating purely quantum properties like enwhereA;,=kX; +eX,, A,;=kX,+€X;. In most of the follow-
tanglement production. Appropriate minimum uncertaintying the coupling strengthswill be small in comparison with
states for spinj particles(so called angular momentum co- k, it means that the degree of chaos in the system is deter-
herent statescan be generated from thi j) state[i.e., the  mined solely by properties of dynamics of individual tops.
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IV. ENTANGLING POWER S

The main idea behind quantifying the entangling power of

quantum evolution is to measure the ability to produce an S
entangled state out of an initial product state in the course of s k=2
the quantum evolution. Although for particular reasons or '_"';:‘;

applications we can choose a concrete initial state and follow —sL
evolution of its entanglement properties when time passes,
such a history would definitely bear a lot of imprints of the

initial state we chose to start with. In our study we are more
interested in entanglement capabilities of the system itself, so FIG. 1. The time evolution of the linear entropy averaged over

it is more reasonable to take the average over some set dfitial spin-coherent product statéSgy,)), calculated for different

kicks

200 400 600 800 1000

initial states—the idea advanced by Zangii] chaoticity parameter& of subsystemgdifferent kick strengths
Spin magnitudes of two interacting tops are taken respectiyely
(V) = (SU([g) @ [¢2) D)y - (4.1)  =19.5,j,=20 and the coupling strengt=0.01. The evolution time

In the ab f IS . f comprises 1000 kicks. The statistical lim8L) for entanglement is
n the above formulas Is some appropriate measure o €N~ grawn with the solid line and corresponds to the average entangle-

tanglement(in our Case.'t will be the I'n_e"_"r entropyand ment of a randomly chosen state of the composite system. Increas-

{())y,.4, denotes averaging over a set of initial product stategng the chaoticity parameter causes in general an increase in the

|l/’1>® |l/f2>- asymptotic value of entangleme@with the exception of the case
The averaging procedure, however, needs more detaileg:0.01). Initial entanglement growth is extremely slow for very

reflection. As mentioned in the previous section, when invesregular dynamicgk=0.01)

tigating the quantum-classical correspondence, it is reason-

able to take as an initial state a spin-coherent state and, COfy,g spins of our two tops are respectivélyF19.5 andj,
sequently, a product of two such states for a composite-2g. This choice is an effect of a compromise. The spins
system. The averaging amounts to integrating over the wholgy,1d be high enough to allow classical correspondence and
set of spin-coherent states parametrized by the sphericg)y, enough to be numerically tractable. Other authors, who
an_glesai and ¢| |:1_,2__|n Eq.(3.4). In order not to distin-  ~ynsidered higher sping=40,j=80), were able to perform
guish any particular initial state, we average over products Ofyeir calculations as they were evolving only a few different
two spin-coherent states each parametrized6band ¢ gtates. Our calculations are performed on ensembles consist-
taken independently from the ensemble with the uniformis ot several hundreds of states. Consequently we sacrifice
probablllty density on the unit sphere. Th|§ kind of averaging;,o spin magnitude for the sake of being able to perform
will be _de'noteql as su)xsu(z).averaglng,_ as our en- ayeraging over many states. The chosen sping, are not
semble is invariant under the action of rotation in either Ofequal. This does not change evolution significacgy com-
the subsystems.. _ _ pared with j;=j,=20), but removes degeneracy among
As already written, there is no particular reason for such jgenstates of one-period evolution operatorLack of de-
ch0|pe of the set of initial states whe_n glob.al entangling Progeneracy is essential for the eigenvectors entanglement
duction properties of our system are investigated. Instead ONghalysis, which will be explained later.
can average over the whole set of initial product states. In  The coupling strength is chosen to be0.01, while the
order to treat all pure product states on equal footlng ON&trength of kicksk (equal for both topswill be varied from
should choose the ensemble of product states with probabik—q to k=6. Chaos enters the classical dynamics of a single
ity distribution invariant under the action of $)  {op atk~2. The coupling constant is small enough to assure

X SU(dp), whered,, d; are the Hilbert space dimensions for that all chaotic behavior is due to the kicks of the tops and
the subsystems. In this way we obtain a natural ensemble ¢fot their interaction.

random product states.
It is not a surprise that SQ) xSU(2) and SUd,)
X SU(d,) averages can lead to different quantitative esti-
mates of the entangling power; what is more important they In Figs. 1 and 2 we show calculations for 1000 iterations
differ also qualitatively. of tops evolution. In Fig. 1 the evolution of linear entropy
One can also think about other characterizations of entaraveraged over 100 random initial spin-coherent product
gling capabilities of quantum evolution operators. For ex-states is presented.
ample, entanglement properties of eigenvectorsUotan During the first 1000 kicks most of the curves saturate to
give some information about possible entanglement producsome asymptotic value. The only exceptikr,0.01, requires
tion. The matter, however, is rather subtle, as it will be cleam little more time to saturate. The saturation of entanglement
from the subsequent discussion. in the evolution of the kicked tops is present also in the case
of single spin-coherent product state evolution—the averag-
ing over spin-coherent states is not necessary, yet the aver-
aged curves have smoother behavior. Different curves satu-
In this section we present the main results of the numerirate to different asymptotic values. This observation was
cal calculations of the evolution of the coupled kicked tops.made in[12], where it was pointed out that the higher the

A. Entanglement evolution

V. NUMERICAL RESULTS FOR COUPLED KICKED TOPS
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FIG. 3. This figure presents the dependence of asymptotic val-
ues of entanglement on the chaoticity paramktésymptotic val-
ues of entanglement corresponding to averaging over initial random
f product stategthe SUd) averaging are denoted by stars and
... asymptotic values corresponding to the averaging over initial spin-
t%oherent product statdthe SU?2) averaging are denoted by tri-
angles. The dashed line represents the Lyapunov exponent of the
classical dynamics of a single top. The mean entanglement of eigen-
. : o ; . vectors of the evolution is denoted by rectangles. Statistical limit
prises 1(.)00 k'Cks'. The statistical limiSL) for entanglement is (SL) for entanglement is drawn with the solid line and corresponds
drawn with the solid line and corresponds to the average entangl% average entanglement of a randomly chosen state of the compos-
_m_e_nt of a randomly °h°se_” st_ate of the composite system. Thl‘?e system. Chaos indeed increases asymptotic value of entangle-
initial entanglement growth is higher for regular dynamiosw k) ment in the case of spin-coherent states and, to some extent, also in

than for the chao_nc onghigh k.)' While asymptotic va_Iues of en- the case of random product states; nevertheless very regular regime
tanglement are high for chaotic cases, the asymptotic value for thﬁzo also manifests high asymptotic entanglement which can be
most regular dynamick=0.01 outperforms all other cases. related to high entanglement of eigenvectors

FIG. 2. The time evolution of the linear entropy averaged over
the ensemble of initial random product stateq), with the
probability distribution invariant under the action of the @y
X SU(d,) group, wheread;=2j;+1,d,=2j,+1 are the dimensions o

parameter& of the subsystem@ifferent kick strengths Spin mag-
nitudes of two interacting tops are taken respectivigly19.5, j,
=20 and the coupling strengtt=0.01. The evolution time com-

chaos parametds, the higher also is the asymptotic value of
entanglement reached by the spin-coherent product stat)g
|6,4)®|6,¢) (0=0.89,$=0.63. Our averaged results con-
firm this observation only partially. While the asymptotic
value indeed increases wikifor k=1, it is also quite high in
the nonchaotic regimek=0.01. Fork=0.01 the asymptotic
value is higher than that fde=1, k=2. Opposite to the non-
monotonic behavior of the asymptotic values, the initial en
tanglement production rates seem to increase monotonical
with k. We shall discuss these observations more thoroughl
in the following. The statistical limi{SL) calculated as an
average entanglement of a random pure state of the full sy
tem[21] is drawn with a thin solid line.

In Fig. 2 we present the result of averaging over 10
random product states with the probability distribution in-
variant under the action of the $tlj) X SU(d,) group, where
d;=2j,+1, d,=2j,+1 are the dimensions of subsyste(tie
state of one top is chosen independently from the state of the
othen. We generated random product states using random
unitary matrices, distributed uniformly according to the We give here more detailed results on asymptotic en-
SU(d,) X SU(d,) Haar measure, applied to a fixed producttanglement. In Fig. 3 the asymptotic values of entanglement
state[22]. Different asymptotic values of entanglement for are presented for different values kf For more credible
different k is again visible. A monotonic increase of the results the asymptotic values were obtained as averages of
asymptotic values can be observed ks#2,4,6.However, the linear entropy over the evolution of the tops between
the differences in the asymptotic values for4,6 aretiny. 50 000 and 100 000 kicks. Stars correspond tqddlaver-
Thek=0.01 case is especially interesting. During 1000 kicksaging while triangles correspond to &) averaging. The
the entanglement saturates to an extremely high value—-kyapunov exponent obtained from the classical dynamics of
higher than for all other values & Again, a nonmonotonic a single top is shown by the dashed line. For the sake of later
k dependence of the asymptotic entanglement is observed.discussion we also included the mean entanglements of

Studying the initial production rate of entanglement oneeigenvectors of the evolution operator—denoted by rect-
can observe anticorrelation with the paramétefhe fastest angles.

For shortening the notation we shall denote the(ZU
SU(2) averaging by the S(2) averaging and the S4d,)

X SU(d,) by the SUd) averaging. The S(d) averaged be-
havior of initial entanglement growth is strikingly different
as compared with the SB) averaging. In the latter case the
initial entanglement production rate was almost zero for low
values ofk, while in the former it was extremely high. Con-
quently, one should always distinguish between the entan-
ling power of an evolution and its particular entangling
roperties in acting on a certain group of states as these two
nay behave very differently.

Summing up the qualitative discussion we conclude that
0the entangling power of the evolutioftorresponding to
SU(d) averaging both in terms of the asymptotic value and
the initial growth is the highest for very lok—ie., for very
regular dynamics.

B. Asymptotic behavior

initial growth of entanglement corresponds ke 0.01, and In the case of S(2) averaging, for very low values d,
the slowest to highly chaotic casks4,6—chaos suppresses the asymptotic values are high. With the increasd tiey
the initial entanglement production rate. decrease, reaching minimum fke=1.5, subsequently, with
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s tion, let us first make a general remark which applies to both
0045 cases. Looking at Fig. 3 and Fig. 4 one can notice that when
the chaoticity parameter is largk>5) differences between
003 JRE Lyapunov the SU2) averaging and the Sd) averaging disappear, both
0,02 —~ SUQ@) in results for the asymptotic and the initial behavior. It means
/ - SU@ that there is no difference, whether we choose as our initial
0.01 : states the ensemble of spin-coherent product states or the
x ensemble of random product states. Disappearance of the
1 2 3 4 5 6 difference between two averaging methods for high due

_— ) to strong chaos which very quickly turns initial spin-coherent
FIG. 4. Dependence of initial entanglement production rate ong.o < ineo random pure states. The distinction between two
the chaoticity parameter. Results obtained after averaging over

initial random product stateshe SUd) averaging are denoted by averaging methods, however, is crucial in mixed and regular

stars and results due to averaging over initial spin-coherent produé?g'mes'

states[the SU2) averaging are denoted by triangles. The dashed

line represents the rescaled Lyapunov exponent of the classical dy- A. Entanglement of eigenvectors vs asymptotic values
namics of a single top. In the case of random product states the of entanglement of evolved states

highest initial entanglement growth corresponds to very regular dy-

namics and diminishes with the increase of the chaoticity parametelr tAUbsk;tractlng_Ior a Wh"et.f rom tft1_e cz_ise OLFIhbe I?Cked tops,
k while in the case of spin-coherent product states it is very regulae € a unitary operation acting in a Hilbert spatg

dynamics that has the slowest initial entanglement growth. ®Hp, where dimensions ofty, H, are respectively; and
d,. We denote bye), ¢, fori=1...d;d, the eigenvectors and

th t of ch thev i : d wall eigenphases of the operatdr We assume here that the spec-
te o_rll_?]e 0 tC 5,:.05’ ?y n_wcreT_\tstle a;)gziun ‘rm etv‘iﬂtl_la m.sa_‘:HUm is nondegenerate. The reduced density matrices of the
rate. the saturation value 1s a littie below the statstical iMiteigenyectors after tracing out the second subsystenpare

cL =Try(|e)g|). As information about entanglement of an ei-
The SUd) averaging reveals almost no dependence of the 2exel). : : u g9 I

asymptotic value of entanglement kriNevertheless, there is genvector we use again the linear entropy of its reduced den-
Ve ’ ity matrix: §=1-Tr(p?). The mean entanglement of eigen-
also a tiny dip aroun&k=2 and the entanglement for very Sity matrix: § (pi). The mean entanglement of eige

low k is a little bit higher than that for the strongly chaotic vectors is given by

regime. — 1
The behavior of the mean eigenvector entanglement, also Seigen= 1 —HE Tr(pf). (6.1
reveals a minimum arounkl= 2. Remarkably the entangle- 172 i
ment of eigenvectors for very highis significantly smaller Assume that the initial state of the systen]ys. After n
than asymptotic value of entanglement in this regime. iterations of the operatiob) the resulting state reads
C. Initial behavior ) =2 explingy)(alule). (6.2
i

In order to grasp quantitatively the initial behavior of en-
tanglement, we fit a line to the points representing short-tim
entanglement produced for certain valuekofAlthough the
character of initial entanglement growth is linear only in the
chaotic regime, while in the regular regime it is quadratic _ Co . .
(see Sec. VI C, we perform the fitting in all regimes. This p(n)—% explin(¢i = &) Kelv)(le)Trole)e)),
gives us a sensible estimate of initial entanglement growth.

The fitting is done for points corresponding to the first 15
kicks. Regression coefficients obtained in this way are showWfhe |inear entropy of which reads
in Fig. 4 for both SWY2) and SUd) averaging, together with

%he reduced density matrix of the first subsystem corre-
sponding to this state is given by

(6.3

the rescaled Lyapunov -exponent of a single top. For high Sm=1- Tip(n)?]=1- Tr(z exflin(¢; — ¢+ dx— )]
values ofk both averaging methods give the same results, ijkI

which is caused by strong chaos which even during the first

15 kicks is able to turn spin-coherent states into completely x(a) (e ed ¢>(¢|Q>Tr2(|q><ej|)Tr2(|ek><a|)).
random states. For low values lothe entanglement produc-

tion rate obtained with the Sd) averaging outperforms that (6.4)

of the SUZ2) averaging. Furthermore, it is approximately — rq the asymptotic behavior of the linear entropy the im-
four times higher than in the strong chaos regime. We shall,ant terms in the above formula are those which survive
now move on to explaining these observations. after the time-averaging. These are the terms in which phase
factors disappear. Other terms oscillate and thus vanish when
averaged over time. The nonvanishing terms correspond to

Before moving on to separate discussions on theeitheri=j, k=1 ori=I, k=j. Asymptotic value of linear en-
asymptotic and initial behavior of the entanglement productropy reads thus

VI. THEORETICAL ANALYSIS OF NUMERICAL RESULTS
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Sieymp=1- Tr<2 |<e,|¢>|2\<ej|¢>|2pipj) 2Tr(Tro(|eXe ) Tralle)a)) = Tr(p) + Tr(p)),
i (6.6
- 2l(a |2 . .
T kel llelnPTre)e Trale)eD . T < THpD + TH). 660
(6.5 Proof. We shall prove the first inequality. Let us decom-

pose the eigenvectorlg) in a product basis |g)
—Enlnzcn n, /N ® [N2). We can write: Tx(|e)ej|)= cicat. 1t
We would like to stress here that the above formula is thgg|ows tk11at

result of the averaging over time of the linear entropy itself.

One could take a different approach and first average over 2T Try(leXe ) Tra(e)Xel)]

time the den_sity matrix and th_an calcula_\te the linear entropy = 2TC'CIfCict) = 2TrCITCICITC))
of the resulting density matrix. Following the second ap- (i it it i it
proach one would not get the third term in the above for- = Tr(C''C'C'C) + Tr(C'C!C'C)
mula. This difference is important as it is certainly not the =Tr(p?) +Tr(pj2).

same to calculate the time-averaged entanglement of the

evolved state or to calculate the entanglement of the timet the derivation above we have made use of the Cauchy-
averaged state. We argue that the first approach reveals bet@¢hwarz inequality. Assume thAtand B are Hermitian op-
the entangling properties of the system evolution. One musgrators. The Cauchy-Schwarz inequality then reads
admit, however, that in many cases the second approach willr(A?)Tr(B?) =[Tr(AB)]%. Taking into account thafTr(A?)

give qualitatively similar results. +Tr(B?)*=4 Tr(A?)Tr(B?), one arrives at TA?)+Tr(B?)

We would like now to relate the above formula for the =2 Tr(AB). This explains the derivation above and gives Eq.
asymptotic entanglement of an evolved state with the en¢6.6g. The proof of the inequality6.6b) is analogous.
tanglement of eigenvectors. We start by proving the follow- We now return to the formulés.5). Using the inequalities
ing inequalities: (6.69 and(6.6b we can write

Sasymp= 1= Tr(z |<a|w>|2|<ej|¢>|2pipj) - Tr(z |<e.|¢>|2|<ej|¢>|2Tr2<|e.><ej|>Tr2<|ej><e.|>) >1- Tr(z |<a|¢>|2|<ej|¢>|2pipj)
ij 1#] 1]

- Tr(Z |<e~.|</f>|2|<ej|¢>|2Tr2(la><e;I)Trz(lej><e.|)) = 1- 22 Kel)Tr(pf) =22 [(elwl’S - 1,
ij i i

where§ is the linear entropy of the eigenstdes. One is not entitled, however, to claim that a low mean
We are interested in averaging over initial stat@swhich  entanglement of eigenvectors implies a low mean asymptotic
are either spin-coherent product states or random produentanglement of evolved statésompare Fig. 8 To stress

states. Both averaging procedures lead to once again the inadequate information about entangling
properties of a transformation obtained from studying its ei-
<<|<e,|z//>|2>>¢: 1/d,d.,. (6.7) genvector entanglement, recall that even when all eigenvec-

tors are product states, a transformation can have a nonzero

Finally we arrive at the following relation between mean entangling powetfor example the controlled-phase gate

asymptotic value of entanglement of evolved states and_hiSiSagood place to comment on our decision to fake
mean entanglement of eigenvectors: different fromj,. If we took identical spins for the two tops

the degeneracy of eigenvectors would appear. The presence
_ _ of degeneracy invalidates the inequal{$.8). In the pres-
Sasymp™= 2Ssigen— 1. (6.8 ence of degeneracy estimating entangling power from en-
tanglement of eigenvectors can be even more misleading. As
This inequality is valid for both the S@) averaging and the an example consider a local transformatibhrU; ® U,,
SU(d) averaging. Actually, as Eq6.7) is valid for any en-  which obviously has the zero entangling power. L&}
semble of states which give a resolution of identity, so is Eq® |f,) and|g;)®|g,) be two degenerate product eigenstates.
(6.8) valid in all these cases and not only in the case of3U However, eigenstates in this situation can equally well be
or SU(d) averaging. This inequality puts the lower bound ontaken as(1/12) ([f)®|f)+|g)®|g,)) and (1/42) ([fy)
the mean asymptotic entanglement of evolved states, thus@|f,)—|g;) ® |g,)), which are entangled states. Consequently
high entanglement of eigenvectors induce a high meawalculating numerically eigenstates and their entanglement
asymptotic entanglement of evolved states. we could arrive at the conclusion that the entanglement of
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eigenvectors is high while the transformation itself has the
zero entangling power. Nondegenerate spectrum is thus an

indispensable condition in studying relations between entan- . :g(j)
gling power of a transformation and entanglement of its : Eigi;wm
eigenvectors. 04 L g x*+ —SL
0.2 . * *« k&
. . i
B. Asymptotic behavior 0 12 14 16 18

When explaining the asymptotic value of entanglement of FIG. 5. Asymptotic entanglement of evolved states averaged
an evolved state in a system of two strongly chaotic interactever initial random product statgthe SUd) averaging, stajsand
ing subsystems one can formulate some statistical predi@ver initial spin-coherent product statghe SU2) averaging, tri-
tions. One expects that states evolved in such systems tendaogle$ in the strong chaos reginte=6, calculated for different spin
generically random states. This means that writing arimagnitudesj. Spins of the tops are chosgp=j and j,=j+1/2.

asymptotic state in a product basis: Rectangles denote values of mean entanglement of eigenvectors.
The statistical limit(SL) for entanglement is drawn with the solid
|¢asym;> = E an1n2|nl> ® |n2>' (6.9 line and corresponds to average entanglement of a randomly chosen
niny state of the composite system. A big discrepancy is visible between

h ffici be ind d d the asymptotic entanglement of evolved states and the mean en-
one expects the coe ICIenﬁ1r12 to be independent random tanglement of eigenvectors.

variables. Depending on the symmetries of the system, one

imposes different restrictions on the coefficients arriving thus . | ¢ | f d
at different state ensembles. It is then possible to calculat@SYmPptotic values of entanglement for random states com-

the linear entropy averaged over such ensemil821. pared to the strongly _chaotic regime. This agrees with the
Choosing an ensemble of states which are uniformly dis_results In[23], where different approach was taken-—no spe-

tributed with respect to the action of $djd,) group, one cific model of dynamics was analyzed but instead the Hamil-
arrives at averaged linear entrof]: 2 ' tonians of the subsystems where random matrices chosen

either from chaotic or regular ensembles.

d; +d, It remains to be explained what is the reason for a very
- m (6.10 high entanglement of eigenvectors for low valueskoT his

effect of high entanglement of eigenvectors in the regular

Consequently, the above expression is equal to the averageotion regime was also observed in the spin-kicked rotor
entanglementmeasured as linear entropy of reduced densitysystem[24] and a mechanism is similar here. We shall give a
matrix) of a generically random state of the composite sysqualitative explanation of this effect. For decoupled kicked
tem. We shall use this expression, which we call statisticalops e=0, eigenvectors are product states. For low values of
limit (SL), as a reference for the asymptotic entanglement ok there are many states that are nearly degenerate. Addition-
evolved states. ally, these product states are very close to the product states

When dimensions of subspaces are similg=d,~dand  of eigenvectors of the, operator. Indeed fok=0 one time
large the statistical limit can be written in a simple form step of the evolution of the tops is described by the unitary
Ss =~ 1-2/d. Compare this with the limit imposed solely by operator:
the dimensionality of the subspace¥'®*=1-1/d, whered
is the dimension of the smaller subspace.

In Fig. 5 we compare this formula with the values of the
asymptotic entanglement for strong chaoest, for different

S =1

Saisymp

a SUQ2
spin magnitudes of the two tops. There is no difference be- . sugd;
tween values obtained for the &) and the SWd) averag- : e . [ Slenvedos
ing, and both are a little below the statistical lingiL). 08 Lo 0t
Notice that the eigenvectors entanglement is hardly of any o7y * .
use here in predictions of the asymptotic entanglement. T R T RS VI AR TR

We noticed earlier that for low values &f asymptotic
values of entanglement for the &) and the SWd) averag-
ing are also very high. In the light of the inequali.8) this

is due to the very high entanglemgnt of the eigenvectors 0itates[SU(Z) averaging, trianglgsin the regular regime&=0.01,

the evolution opera'gor. 'Asymptotlc en.tanglements for calculated for different spin magnitudgs Spins of the tops are

:0'(_)1 are presented 'n, Fig. 6 tOQ_ether W',th the emangleme_r%osen:jlzj and j,=j+1/2. Rectangles denote values of mean

of eigenvectors for a different spin magnitudes. The statistiznianglement of eigenvectors. Statistical lifL) for entangle-

cal limit (SL) (6.10 is also plotted for comparison. ment is drawn with a solid line and corresponds to average en-
The agreement between the statistical lig8t) and the  tanglement of a randomly chosen state of the composite system.

asymptotic values of entanglement of the(8laveraging is  Thanks to inequality6.8) high entanglement of eigenvectors is an

purely accidental. This underlines, however, that the regulainhdicator of high asymptotic entanglement for both averaging

regime can be as goodor bettej in generating high procedures

FIG. 6. Asymptotic entanglement of evolved states in the case
of averaging over initial random product sta{&J(d) averaging,
targ and in the case of averaging over initial spin-coherent product

066216-8



GLOBAL ENTANGLING PROPERTIES OF THE COUPLED. PHYSICAL REVIEW E 70, 066216(2004)

Uo = exp(—=ipdy, —ipdy,), (6.11) %
So eigenvectors can be chosen|yasy,), the product states 0.008
of the eigenvectors al, operator. There are many degener- 0.007
ate eigenvectors ofU, for example, |-j,j),|-j+1,] 0.006 « SUQ)
-1),....li,=j). These are 1 states with the eigenphase 0 g‘x * SU@)
(for simplicity we have assumefd=j, and the value of the ’ — Perturbation

spin to be integgr Additionally there will be also groups _
consisting of 2,2j-1, ...,1 degenerate states. The coupling o121 16 18

term expi-eJady), expanc_ied to the first order ig, will FIG. 7. Initial entanglement growth rates averaged over initial
couple the stateyy,y,) with the states of the formy,  random product stateishe SUd) averaging, staisand initial en-
=1yo+1), [y1+1,y,=1), [y1+1,y5+1), [y1—1,¥,—1) (@853,  tanglement growth rates averaged over initial spin-coherent product
is a sum of lowering and rising operators in the basigof states[the SU2) averaging, trianglgs The results are obtained in
eigenvectors A weak coupling between nondegeneratestrongly chaotic regimé=6 and for different spin magnitudgs
states will not cause much change in the form of eigenvecThe spins of the tops differ by 1/3;=j andj,=j+1/2. Thepre-
tors. Let|v;) be the set of degenerate eigenvectorslgfDue  diction of perturbative formulg6.15) is drawn with the solid line.

to the coupling, new eigenvectors will be obtained by diago-Due to strong chaos there is no significant difference between the

i

nalizing a matrix of the approximately following form: spin-coherent and the random states.
p €O o A A
€ p e Ci(n.m) =(Z(Mz(m)) - z(M))3z(m) ,  (6.13
0 ep | andZ(m)=JZi(m)/ji. The Heisenberg picture is used here and

Jzi(n) denotes the operator of projection of the angular mo-

Eigenvectors of such a matrix have large contributions fropfh€Ntum on ther axis at imen for the subsystem (after the

many different vectors;; in our case it means that in every nthTI:]lgk cgrttj?gg?glr]e?o%o'fatl?g the initial behavior of the
subspace of degenerate product eigenvectors new highly eP- pt urbatl d u init Vi
tangled eigenvectors will emerge due to the weak coupling.Inear entropy reads

C. Initial behavior

t t
Fetuhy) = 2€%j,j,>, > D(n,m). (6.14

The initial entanglement growth in the system of coupled o)

kicked tops can be well understood with the help of the
perturbation theory developed fi,10].

It should be clarified here that, although the two paper
[7,10] contain similar results, the motivation and the scope o
their work is a bit different. The main motivation of the work
by Fujisakiet al. [7] is to study entanglement production in
weakly coupled chaotic systems and as a model they co
sider the coupled kicked tops. This is also the approach
take in this article. On the other hand, Znidaand Prosen
consider a problem of stability of quantum dynamics of a
composite system with respect to weak interaction between
two subsystems. They consider different quantities reflecting dt
the stability of quantum motion such as fidelity, reduced fi-
delity, and purity fidelity, and analyze their behavior underThis formula is valid for any initial state, actually not from
regular or chaotic dynamics for different times of evolutionthe very beginning of the evolution, but only after a short
(comprehensive study of the problem of stability of quantumrelaxation time when the linear growth of the linear entropy
dynamics can be found if25]); see alsd8,9,2G). Because emerges. In our case the linear growth appears very quickly,
the linear entropy(S), which is used as a measure of en- after the first few kicks.
tanglement in[7] and in the present work, is related to the = The comparison of the above formula with the initial en-
purity fidelity (Fp) by the formulaS=1-Fp, there is a close tanglement growth rate corresponding to the(3land the
relation between results obtained[inh 10]. SU(d) averaging, in the case of strong ch&e6 is shown in

The essential quantity for understanding initial entangle+ig. 7. The agreement is good and, due to strong chaos, there
ment growth is the product of the time correlation functionsis no significant difference between two ensembles.
of uncoupled subsystems: In the regular regime, the formulgs.14), yields initial

_ quadratic increase of linear entropy, due to nonvanishing cor-
D(n,m) = Ca(n,mCy(n,m), (6.12 relations C(n,m) for n#m [7,9]. In this regime there is
where the correlation function of an uncoupled subsystem igualitatively different behavior of linear entropy increase be-
defined tween SUY2) and SUd) averaging(see Fig. 4.

For strong chaos one can neglect the terms withm, as

ny correlation is quickly washed out. Foem due to the
chaotic character of the motidd(n,n)=1/9 and does not
depend om [7] (more detailed analysis of the behavior of
the correlation function can be found [6-8,1Q). Finally
Yor strong chaos one obtains that the initial growth of linear
Wgntropy is linear, and the rate of the growth is given by

dsaerturb 2 .
2562]1J2- (6.19
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In order to explain the difference we have to estimateC(n,m) (n# m), and consequently the increase of the chao-
values of the correlation functior®(n,m) averaged over the ticity parameter checks initial entanglement growth.

SU(2) and SUd) ensembles of initial states. Notice the fol-  In the case of S(2) averaging, consequences of the in-
lowing formulas for a particle with spiit crease of the chaoticity parameter are twofold. On the one
o hand the increase of chaos decreases correlafitmsn) for
f dMSU(2)<¢|J§|l/f> - M (6.163 n#m, and in this way tran_sform_s initial entanglement
3 growth character from quadratic to linear. On the other hand,
it drives well-localized spin-coherent states into more
j2 smeared states with larger dispersionJpfoperator, which
f dusue (I ¥)?= 3 (6.16D  results in the increase @jn,n) function calculated at equal

times. Depending on the specific values of parameters of the
i+1) system;j,j», €, one of theses factors may bare grater signifi-
o _JUt cance, and it may happen, that the increase of chaos corre-
J duusuaYi%z|¥) = 3 (6.169 sponds to either the irr:grease or decrease of initial entangle-
ment growth(see for example numerical results[ib2] for
i different values ofe parametexr We chose the parameters
J dusua( ¥l ¥ 2= 5’ (6.160 that reveal the increase of entanglement growth with grow-
ing k for SU(2) averaging in order to contrast this with the
where d=2j+1 is the dimension of the particle’s Hilbert behavior of entanglement growth in the case ofl@laver-
space. Proofs of these formulas are given in the Appendix@ging, as for the latter case the increase of chelosys
The same equations can be written whkris replaced by diminishes initial entanglement growth.
eitherJ, or J,. If, however, (|37 ¢) is replaced by a mixed
term—for example(y{J,J,|#»—the integrals(6.163 and VII. CONCLUSIONS
(6.16b vanish. The same happens if in the integi@&d.6b

and(6.16b), the term(y|J,|)? is replaced by a mixed term— In this paper, the problem of the interplay between en-

tanglement production in a quantum system and its chaotic

for example(y|J|¢)(y13{ ). , . properties was analyzed using the model of the coupled
In the most regular cag&=0.01) the evolution of a single  |icked tops.
top is mostly determined by its free rotation aroundxis. Entangling properties of the coupled kicked tops system

Each period corresponds tor 2 rotation. Consequently in \yere investigated by observing the evolution of two different
the Heisenberg picture operatdyevolves approximately in - ensembles of product states. Considerations of ensembles
the following way:J,(1) = J, J(2)==J;, J,3)==Jy, J(4) consisting either of product spin-coherent stdt®s(2) av-
~J;,... . Thevalue of the correlation at equal tim&n.,n)  eraging or random product staté§U(d) averaging lead to
is just the dispersion of,(n) operator. In the case of the gualitatively different results in terms of the initial entangle-
SU(2) averaging this will be proportional to the difference of ment production rate and the asymptotic entanglement of
integrals(6.169 and(6.160 and thus proportional to 3/In evolved states. The asymptotic values of entanglement are
contrast,C(n,n) for the SUd) averaging is proportional to high in a strongly chaotic regimghigh kick strength, still
the difference of integralg6.169 and(6.16d and thus pro- they are even higher for a very regular regiriew kick
portional to 1—the same order of magnitude as in the chaotigtrength, and reach minimum for the parameters of the evo-
case. The same fact will hold for correlation functions calcu{ution that correspond to the onset of chaos.
lated for times differing by even number of kicks, whereas The SU2) averaging reveals strong dependence of the
correlation functions calculated for times differing by odd asymptotic value of entanglement on the kick strength, while
number of kicks will be zero. AB(n,m) is a product of two  asymptotic values obtained after the (@) averaging are
correlation functions for the two tops, it will be approxi- quite insensitive to variation of this parameter. This is due to
matelyj,j, times greater for the Sld) averaging than for the more classical nature of spin-coherent states, which “feel”
SU(2) averaging. In the case we consider, this amounts to thenore directly the transition form regular to chaotic dynamics
ratio of initial entanglement production rate of approximatelyin the classical motion. In the case of the (8lJaveraging,
400. This explains the strikingly different behavior of the the classical transition from regular to chaotic motion has
initial entanglement growth for two considered kinds of av-only minor influence on the asymptotic value of entangle-
eraging in for thek=0.01 case. Different character of en- ment.
tanglement production rate for coherent and random states In order to gain a deeper understanding of the problems,
was also noticed if9]. the asymptotic entanglement behavior was related to the
SU(d) averaging reveals decrease in the initial entanglemean entanglement of eigenvectors of the transformation.
ment growth rate with the increase of chaoticity paramkter We have proved an inequality relating these two quantities.
As the states we average over the ensemble of random staté have also pointed out cases where these quantities differ
invariant under the action of SU), the increase of param- strongly and one is not entitled to infer anything about one of
eterk does not change the value of the dispersiod,abp-  them from the value of the other.
erator; thusC(n,n) does not depend ok At the same time Finally we have studied the averaged initial entanglement
the increase ok decreases correlation for different times production rate. The striking difference between the(BU
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and the SWd) averaging was explained with the help of the tion of a state is much more restricted, but in the system of
perturbation theory[7,10. In the regular regime spin- coupled kicked tops, due to a very high entanglement of
coherent product states become entangled much slower thaigenvectordsee inequality(6.8)] the asymptotic entangle-
random product states, due to a significantly smaller value ofent is also very high.
averaged variances of angular momentum components.

Regular to chaotic transition can indeed be observed in
the global entangling properties of the kicked tops. These ACKNOWLEDGMENTS
manifestations, however, are different depending on the en- \ye would like to thank T. Prosen and M. Znidafior

sembles of states considered. When considering randomforming us about Refg8-10. This work was supported

product states the increase of the chaoticity parameter alwa)@ the EC through Grant No. QUPRODIS, Contract No. IST-

diminishes initial entanglement growth. For spin-coherent2001_38877 and the Polish Ministry of Scientific Research
states increase of chaos results in two competing tendencieg' d Informétion Technology undeisolicited Grant No
chaos drives coherent states into more delocalized states apgh- _\ 1.0 008/P03/03 9y '

thus helps entanglement growth, but on the other hand it
destroys time correlations in subsystems, which checks en-
tanglement growth. We chose parameters of the evolution in ~ APPENDIX: DERIVATION OF FORMULAS (6.16)
which first tendency prevailed and thus contrasted the behav-

ior of spin-coherent vs random states. Formulag6.169 and(6.169 can be explained using sym-

When discussing asymptotic entanglement we have opl€lry arguments. If instead df, we tookJ?=J3+ 3+ J;, the
served that both purely regular and strongly chaotic regime§'€a" valug(yfJ*|y)=j(j+1), for any state. Both S(2) and
enjoy a very high asymptotic entanglement. Reasons for higfU(d) averaging do not d'St'ggu'Sh zany direction in space.
asymptotic entanglement in regular and chaotic cases are dionsequently averages df, J; and J; should be equal. In
ferent. In the chaotic case, chaotic dynamics in subsystenf@der to sum up tq(j+1) for J* operator each of these av-
allows for a coupling of arbitrary states and consequently agrages must be equilj+1)/3
initial product state can become highly entangled as the dy- Let us now prove formula6.16b. A spin-coherent state
namics is able to penetrate Hilbert space of the compositean be obtained as a rotation |¢f state:|¢, $)=R(6, ¢)|j).
system with almost no constraints. In the regular case evolufhis allows us to write

1

1
[ dsuatwiadi= - [ aoasioxoiatos?=- [ ams s iIre.s'ar0.6) -7

- %T f déde sin(6)(~ j|3,co8(6) + 3, sin(6)cod ) = J, sin(B)sin(¢)| - })?

1 2
= J dede sin()cos(6)j? = L
A1 3

[

The proof of formula6.16d requires a little more effort. 1 I'(2j+1) > i1/
An arbitrary state|y) can be written agy)=3}__a,m), P1(x) = 7 (1 -x9977,
wherea,,=x,+iy, are complex coefficients. The $dJ av- v F(Zj + =
eraging ovet) results in a random distribution @f,, coef- 2
ficients with the probability distribution: i)

2j)! :
| Pax ) = - (1= -y
P =P _ @A i 2
(@, - @y) = POy - X)) = A0\ T & X Note also the following equalities:
m==j
: J dx ¥*Py(x) = 3 (Ala)
- E_y?n>- SR r )i+’
m=-
. L . 2 1
Marginal distributions can be calculated from the above for- dxdy ¥y?P,(x,y) = ———————.  (Alb)
. 8(j+1)(2j+1)
mula. In what follows we shall need the two lowest marginal
distributions ofP, i.e., P1(x) and Px(x,y) [27]: We are now prepared to prove formy&169:
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j j 2 j 2
fdﬂsu(d)<¢|~]z|¢>2: f da---dgP(ay, ... ﬁj)( E a;(n|Jz E am|m>) :fda—j"'dajp(&j, 1aj)( E |am|2m)

n=-j m=-—j m==j
i
- f daj - dgPla, .. @) S S lanlamn
m==j n=-]
Only the terms with eithen=m or n=—m contribute, as all others cancel out:

j j
fd&j"' daP(aj, ... &) 2 | *m? - E a3 ey ?m?

m=-j m=-j

i i
:fd)Ljdy_j---dxjdyjP(Kj,y_j, X)) X Ot Y DY = D (G + Y2 0+ Y

m=—j m=—j

" 1 j+DEi+D _j

- _ 2 _
_<2f dx XP;(x) 2dedy Xy Pg(x,y)>n§_j me = 2+ D2 +1) 3 6
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