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We study global entangling properties of the system of coupled kicked tops testing various hypotheses and
predictions concerning entanglement in quantum chaotic systems. In order to analyze the averaged initial
entanglement production rate and the averaged asymptotic entanglement, various ensembles of initial product
states are evolved. Two different ensembles with natural probability distribution are considered: product states
of independent spin-coherent states and product states of random states. It appears that the choice of either of
these ensembles results in significantly different averaged entanglement behavior. We investigate also a relation
between the averaged asymptotic entanglement and the mean entanglement of eigenvectors of the evolution
operator. Lower bound on the averaged asymptotic entanglement is derived, expressed in terms of the eigen-
vector entanglement.
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I. INTRODUCTION

Looking for quantum signatures of the classical transition
from regular to chaotic dynamics is the field of quantum
chaos[1,2]. Recently it was suggested[3,4] that entangle-
ment production in a quantum system can be a good indica-
tor of the regular to chaotic transition in its classical coun-
terpart.

In both of the invoked studies[3,4] it was observed that
the presence of chaos enhances the rate at which an initial
product state is getting entangled. In the paper[4] Miller and
Sarkar considered coupled quantum kicked tops. Single
kicked top is a thoroughly studied model in the quantum
chaos literature. Depending on the strength of kicks its clas-
sical dynamics is either regular or chaotic. Miller and Sarkar
studied a system consisting of two identical kicked tops with
an additional weak interaction between them. The strength of
kicks was chosen in such a way that the classical phase space
of a single top was mixed(consisted both of regular tori and
chaotic regions). Two tops were initially in a product state of
two spin-coherent states. The reason for this choice is that
spin-coherent states have a good classical limit, that gives a
chance to relate the classical phase space picture to the quan-
tum description. The spin-coherent state of the first top was
chosen to lie in a chaotic region while the spin-coherent state
of the second one was varied from a regular to a chaotic
region. The system was then evolved and it was observed
that the rate of entanglement increase(measured as the von
Neumann entropy of the reduced density matrix) was higher
when the second top was placed in a chaotic region. More
quantitatively, it was shown that for different quantum initial
states the rate of entanglement increase was proportional to
the sum of two positive Lyapunov exponents calculated for
the corresponding classical distribution of initial points.
These results supported the claim about close relation be-
tween chaotic behavior of classical systems and entangling
properties of their quantum versions.

Further investigations revealed, however, that there is no
such direct relation between chaos and entanglement[5–11].
In particular it was observed that it is rather a specific time

correlation function than the Lyapunov exponent itself that
determines the entanglement production rate. Strong chaos is
able to destroy the time correlations even on a very short
time scale and thus it diminishes initial entanglement pro-
duction rate.

Apart from studying the entanglement production rate,
which is a quantity calculated from a short-time behavior of
the evolved state, one can also study asymptotic properties of
entanglement, i.e., those appearing in the long-time limit.
The question whether the asymptotic value of entanglement
is related to chaos was posed in[12]. If the coupling strength
between kicked tops is large enough to observe the saturation
of entanglement within a given time, the asymptotic value of
entanglement is higher the greater is the chaos parameter(the
kick strength). This observation was made starting with an
initial state in the form of a product of two spin-coherent
states placed in a region which for low kick strengths was
regular, contained a part of a separatrix for stronger kicks,
and eventually became chaotic for very strong kicks.

In the present paper we also concentrate on the case of
coupled kicked tops. In most of the previous studies the at-
tention was focused on analyzing how an initial product state
of certain spin-coherent states evolves in time. Here we
would like to address a more general problem. Namely, how
does the strength of chaos influence the global entangling
properties of the evolution of the kicked tops? By global we
mean properties not depending on a specific choice of initial
product state. In other words this is the question of whether
the entangling capabilities of the transformation depend on
the strength of chaos. Global entangling properties were ana-
lyzed in the kicked Ising spin chain model[8], where evolu-
tion of random states was investigated, and decrease of en-
tanglement production rate with the increase of chaos was
observed.

Another approach often used[13] in determining the en-
tangling power of an operation consists of analyzing its
eigenvectors. In the case of periodically driven systems these
are the eigenvectors of a unitary operatorU corresponding to
the one-period evolution. The degree of eigenvector en-
tanglement is then regarded as an information about entan-
gling properties of the evolution. We show that the informa-
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tion about entanglement of eigenvectors does not, however,
give the full picture of entanglement properties of the evolu-
tion, but only a rough estimate of the asymptotic behavior of
entanglement of evolved states(see Sec. VI A).

In order to discuss entangling properties of the evolution
of the kicked tops, we evolve not a single product state, but
a whole ensemble of random product states, chosen uni-
formly with respect to action of SUsd1d ^ SUsd2d group,
where d1, d2 are the Hilbert space dimensions of the two
tops. We calculate the averaged asymptotic entanglement ap-
proached by evolved states, and the initial rate of entangle-
ment production. All pure states are treated on equal footing
here. Spin coherent states are as good as any other pure state.
This way of averaging gives us information aboutthe entan-
gling power of evolution, as defined in[14].

Additionally we shall calculate the entanglement produc-
tion when initial states are products of two spin-coherent
states, where each spin-coherent state, parametrized by two
spherical anglesu, f, is taken independently from the en-
semble with uniform probability density on the unit sphere.
The two ways of averaging give qualitatively different re-
sults. We shall analyze the results with the help of the per-
turbative approach[7,10] and the analysis of the entangle-
ment of eigenvectors.

The observation that is worth mentioning here is that even
in a very regular regimethe entangling poweris extremely
high—higher than in chaotic cases—both when discussing
the asymptotic entanglement behavior and the initial en-
tanglement production rate.

Our results are another step to reveal the relation between
chaotic vs regular motion and entanglement production.

II. ENTANGLEMENT

Entanglement is a purely quantum phenomenon, dividing
states of a composite quantum system into two classes: those
which can be written as products of some states of the(two
in this case) subsystems:

uCl = uc1l ^ uc2l, s2.1d

called product states, and all others which cannot be written
in the form (2.1) but instead involve a genuine, nontrivial
linear combination

uCl = o
i j

cij uc1il ^ uc2jl. s2.2d

The definition above applies only when one deals with pure
states. The notion of entanglement for mixed states is more
subtle [15], and it is very difficult in general to determine
whether a given mixed state is entangled or not. In this paper
the state of the composite quantum system we consider is
always pure.

For a given pure stateuCl it is easy to check whether it is
entangled or not. Observe that if the state is a product one,
averaging over one of the subsystems of the corresponding
density matrixr= uClkCu gives a pure state of the remaining
subsystem:

r1 ª Tr2srd = uc1lkc1u, s2.3d

whereas the same procedure applied to an entangled state
produces necessarily a genuine mixed state. This observation
can be further quantified by calculating the linear entropy for
the reduced density matrix

SL ª 1 − Trsr1
2d, s2.4d

which vanishes for product states and reaches the maximal
value:

SL
max= 1 − 1/d, s2.5d

whered=minsd1,d2d is the Hilbert space dimension of the
smaller subsystem, for the “maximally entangled state”(by
definition this is the state which reduces to the “maximally
mixed” state of a subsystem—the latter is characterized by a
diagonal density matrix with equal entries). In this senseS is
a measure of entanglement for pure states of a composite
system.

Another often used measure of entanglement for pure
states is the von Neumann entropy of the reduced density
matrix:

SvN = − Trsr1 log2 r1d. s2.6d

For product statesSvN=0, as the reduced density matrixr1 is
also pure, while for the maximally entangled states the von
Neumann entropy of the reduced density matrix takes the
highest valueSvN

max= log2 d. Contrary to the linear entropy, the
above measure of entanglement has a nice operational mean-
ing in terms of the number of maximally entangled states
that can be distilled from a given number of nonmaximally
entangled states[16].

Actually all quantities which do not increase under local
operations(i.e., operations acting separately in each sub-
system) and classical communication quantify in some way
the amount of entanglement present in a state. These in gen-
eral are calledentanglement monotones[17]. Linear and von
Neumann entropy discussed above are examples of such en-
tanglement monotones for pure states.

In the following we shall use the linear entropy(2.4) as
the measure of entanglement. We choose this measure, in-
stead of the von Neumann entropy(2.6), as linear entropy is
easier to calculate and there is a perturbative formula for
initial growth of linear entropy[7,10] in weakly coupled sys-
tems which we shall use. Furthermore, in the investigations
concerning relation between chaos and entanglement, where
both von Neumann and linear entropy were calculated
[7,12,18] no qualitative difference in the behavior of the two
was found, thus the choice of either of them is not crucial.

It is argued that the presence of entanglement is important
in many novel applications of quantum information process-
ing [19], which explains the prominence enjoyed by this phe-
nomenon in many recent investigations. In our study we
shall concentrate only on the interplay between production of
entanglement in a composite quantum system and its chaotic
properties.
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III. COUPLED KICKED TOPS

The kicked top is a paradigmatic model for studying
quantum chaos in finite-dimensional Hilbert spaces[20]. It is
a particle with the total spinj and the dynamics generated by
the Hamiltonian

H = pJy +
k

2j
Jz

2 o
n=−`

`

dst − nd. s3.1d

HereJy andJz are the components of the angular momentum
operator fulfilling the standard commutation relations
fJy,Jzg= iJx, etc. The time dependence takes the form of an
infinite train of delta-shaped pulses(“kicks” ) perturbing the
free rotation periodically in time. The quantitiesp andk are
adjustable parameters of the model. The latter, called the
kick strength, is scaled by the total spinj—observe that the
total angular momentumJ2=Jx

2+Jy
2+Jz

2 is conserved,
fJ2,Hg=0, hence we can investigate the dynamics of the
model for each value ofj independently, restricting the dis-
cussion to the appropriatefs2j +1d3 s2j +1dg-dimensional
space. To exhibit various interesting dynamical aspects of the
model it is enough to change one of the parameters. In the
following we putp=p /2 and varyk.

The unitary time evolution operator transporting the wave
function of the kicked top in time over one period of the
perturbation,

U = expS− i
k

2j
Jz

2DexpS− i
p

2
JyD , s3.2d

generates the Heisenberg equations of motion for the angular
momentum operatorsJx, Jy, andJz

Jx8 = U†JxU = 1
2sJz + iJyde−isk/ jdsJx−1/2d + H.c.,

Jy8 = U†JyU =
1

2i
s− Jz + iJyde−isk/ jdsJx−1/2d + H.c.,

Jz8 = U†JxU = − Jx, s3.3d

giving the operatorsJx8, Jy8, andJz8 at timet=n+1 in terms of
their predecessorsJx, Jy, andJz at time t=n.

As in all studies of quantum chaotic phenomena we are
ultimately interested in comparing quantum and classical dy-
namics of the model. In the present the Planck constant has
been set to unity hence the classical limit corresponds toj
→` limit (“large quantum numbers”). More formally one
defines the quantitiesX, Y, andZ as averages ofJx/ j , Jy/ j ,
andJz/ j calculated in the initial state of the system. In com-
paring classical and quantum behavior it is reasonable to take
as an initial state some minimum uncertainty state, in belief
that (at least in the largej limit ) the evolution of averages
will be well represented by the single classical trajectory
starting from the point in the phase space around which the
initial quantum state of minimal uncertainty is concentrated.
Obviously, there is no particular reason to distinguish such
states when investigating purely quantum properties like en-
tanglement production. Appropriate minimum uncertainty
states for spinj particles(so called angular momentum co-
herent states) can be generated from theu j , jl state[i.e., the

common eigenstate ofJz and J2 with the eigenvaluesm= j
and js j +1d, respectively] by unitary rotations

uu,fl = s1 + ugu2d−jegsJx−iJydu j , jl, g = eif tan
u

2
, s3.4d

and the above described procedure leads to the following
classical mapping:

X8 = Z cosskXd + Y sinskXd,

Y8 = − Z sinskXd + Y cosskXd,

Z8 = − X. s3.5d

A detailed analysis of the classical dynamics(3.5) is given in
[20], let us only summarize that the system is integrable for
k=0 and becomes visibly chaotic whenk.2. Fork around 3
the phase space exhibits well developed mixed structure with
few regular islands embedded in the chaotic see. Whenk
<6 islands of stability, although present, are very small and
the chaos can be treated as fully developed for all practical
purposes. From the point of view of quantum chaos, the
islands are negligible if their phase-space area is smaller than
the effective value of the Planck constant(1/ j in our case),
which will be the case in our calculations.

In order to achieve our ultimate goal, i.e., the investiga-
tion of parallels between chaos and entanglement we follow
the idea of Miller and Sarkar[4] and consider two coupled
kicked tops with the Hamiltonian

H = H1 + H2 + HI , s3.6d

whereH1 andH2 are the Hamiltonians of independent kicked
tops(3.1) expressed in terms of the operatorsJx1

,Jy1
,Jz1

and
Jx2

,Jy2
,Jz2

pertaining to each individual top, whereasHI is a
nonlinear coupling term

HI =
e

j
Jz1

Jz2 o
n=−`

`

dst − nd. s3.7d

The procedure of obtaining the classical evolution equations
is exactly the same as the one for a single top described
above, and yields[12]

X18 = Z1 cosD12 + Y1 sinD12,

Y18 = − Z1 sinD12 + Y1 cosD12,

Z18 = − X1,

X28 = Z2 cosD21 + Y2 sinD21,

Y28 = − Z2 sinD21 + Y2 cosD21,

Z28 = − X2, s3.8d

whereD12=kX1+eX2, D21=kX2+eX1. In most of the follow-
ing the coupling strengthse will be small in comparison with
k, it means that the degree of chaos in the system is deter-
mined solely by properties of dynamics of individual tops.
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IV. ENTANGLING POWER

The main idea behind quantifying the entangling power of
quantum evolution is to measure the ability to produce an
entangled state out of an initial product state in the course of
the quantum evolution. Although for particular reasons or
applications we can choose a concrete initial state and follow
evolution of its entanglement properties when time passes,
such a history would definitely bear a lot of imprints of the
initial state we chose to start with. In our study we are more
interested in entanglement capabilities of the system itself, so
it is more reasonable to take the average over some set of
initial states—the idea advanced by Zanardi[14]

epsUd = kkSfUsuc1l ^ uc2ldgllc1,c2
. s4.1d

In the above formulaS is some appropriate measure of en-
tanglement(in our case it will be the linear entropy), and
kk·llc1,c2

denotes averaging over a set of initial product states
uc1l ^ uc2l.

The averaging procedure, however, needs more detailed
reflection. As mentioned in the previous section, when inves-
tigating the quantum-classical correspondence, it is reason-
able to take as an initial state a spin-coherent state and, con-
sequently, a product of two such states for a composite
system. The averaging amounts to integrating over the whole
set of spin-coherent states parametrized by the spherical
anglesui and fi, i =1,2 in Eq.(3.4). In order not to distin-
guish any particular initial state, we average over products of
two spin-coherent states each parametrized byui and fi
taken independently from the ensemble with the uniform
probability density on the unit sphere. This kind of averaging
will be denoted as SUs2d3SUs2d averaging, as our en-
semble is invariant under the action of rotation in either of
the subsystems.

As already written, there is no particular reason for such a
choice of the set of initial states when global entangling pro-
duction properties of our system are investigated. Instead one
can average over the whole set of initial product states. In
order to treat all pure product states on equal footing one
should choose the ensemble of product states with probabil-
ity distribution invariant under the action of SUsd1d
3SUsd2d, whered1, d2 are the Hilbert space dimensions for
the subsystems. In this way we obtain a natural ensemble of
random product states.

It is not a surprise that SUs2d3SUs2d and SUsd1d
3SUsd2d averages can lead to different quantitative esti-
mates of the entangling power; what is more important they
differ also qualitatively.

One can also think about other characterizations of entan-
gling capabilities of quantum evolution operators. For ex-
ample, entanglement properties of eigenvectors ofU can
give some information about possible entanglement produc-
tion. The matter, however, is rather subtle, as it will be clear
from the subsequent discussion.

V. NUMERICAL RESULTS FOR COUPLED KICKED TOPS

In this section we present the main results of the numeri-
cal calculations of the evolution of the coupled kicked tops.

The spins of our two tops are respectivelyj1=19.5 andj2
=20. This choice is an effect of a compromise. The spins
should be high enough to allow classical correspondence and
low enough to be numerically tractable. Other authors, who
considered higher spinss j =40,j =80d, were able to perform
their calculations as they were evolving only a few different
states. Our calculations are performed on ensembles consist-
ing of several hundreds of states. Consequently we sacrifice
the spin magnitude for the sake of being able to perform
averaging over many states. The chosen spinsj1, j2 are not
equal. This does not change evolution significantly(as com-
pared with j1= j2=20), but removes degeneracy among
eigenstates of one-period evolution operatorU. Lack of de-
generacy is essential for the eigenvectors entanglement
analysis, which will be explained later.

The coupling strength is chosen to bee=0.01, while the
strength of kicksk (equal for both tops) will be varied from
k=0 to k=6. Chaos enters the classical dynamics of a single
top atk<2. The coupling constant is small enough to assure
that all chaotic behavior is due to the kicks of the tops and
not their interaction.

A. Entanglement evolution

In Figs. 1 and 2 we show calculations for 1000 iterations
of tops evolution. In Fig. 1 the evolution of linear entropy
averaged over 100 random initial spin-coherent product
states is presented.

During the first 1000 kicks most of the curves saturate to
some asymptotic value. The only exception,k=0.01, requires
a little more time to saturate. The saturation of entanglement
in the evolution of the kicked tops is present also in the case
of single spin-coherent product state evolution—the averag-
ing over spin-coherent states is not necessary, yet the aver-
aged curves have smoother behavior. Different curves satu-
rate to different asymptotic values. This observation was
made in[12], where it was pointed out that the higher the

FIG. 1. The time evolution of the linear entropy averaged over
initial spin-coherent product statessSSUs2dd, calculated for different
chaoticity parametersk of subsystems(different kick strengths).
Spin magnitudes of two interacting tops are taken respectivelyj1
=19.5, j2=20 and the coupling strengthe=0.01. The evolution time
comprises 1000 kicks. The statistical limit(SL) for entanglement is
drawn with the solid line and corresponds to the average entangle-
ment of a randomly chosen state of the composite system. Increas-
ing the chaoticity parameter causes in general an increase in the
asymptotic value of entanglement(with the exception of the case
k=0.01). Initial entanglement growth is extremely slow for very
regular dynamicssk=0.01d
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chaos parameterk, the higher also is the asymptotic value of
entanglement reached by the spin-coherent product state
uu ,fl ^ uu ,fl su=0.89,f=0.63d. Our averaged results con-
firm this observation only partially. While the asymptotic
value indeed increases withk for kù1, it is also quite high in
the nonchaotic regime −k=0.01. Fork=0.01 the asymptotic
value is higher than that fork=1, k=2. Opposite to the non-
monotonic behavior of the asymptotic values, the initial en-
tanglement production rates seem to increase monotonically
with k. We shall discuss these observations more thoroughly
in the following. The statistical limit(SL) calculated as an
average entanglement of a random pure state of the full sys-
tem [21] is drawn with a thin solid line.

In Fig. 2 we present the result of averaging over 100
random product states with the probability distribution in-
variant under the action of the SUsd1d3SUsd2d group, where
d1=2j1+1, d2=2j2+1 are the dimensions of subsystems(the
state of one top is chosen independently from the state of the
other). We generated random product states using random
unitary matrices, distributed uniformly according to the
SUsd1d3SUsd2d Haar measure, applied to a fixed product
state[22]. Different asymptotic values of entanglement for
different k is again visible. A monotonic increase of the
asymptotic values can be observed fork=2,4,6.However,
the differences in the asymptotic values fork=4,6 aretiny.
Thek=0.01 case is especially interesting. During 1000 kicks
the entanglement saturates to an extremely high value—
higher than for all other values ofk. Again, a nonmonotonic
k dependence of the asymptotic entanglement is observed.

Studying the initial production rate of entanglement one
can observe anticorrelation with the parameterk. The fastest
initial growth of entanglement corresponds tok=0.01, and
the slowest to highly chaotic casesk=4,6—chaos suppresses
the initial entanglement production rate.

For shortening the notation we shall denote the SUs2d
3SUs2d averaging by the SU(2) averaging and the SUsd1d
3SUsd2d by the SUsdd averaging. The SUsdd averaged be-
havior of initial entanglement growth is strikingly different
as compared with the SU(2) averaging. In the latter case the
initial entanglement production rate was almost zero for low
values ofk, while in the former it was extremely high. Con-
sequently, one should always distinguish between the entan-
gling power of an evolution and its particular entangling
properties in acting on a certain group of states as these two
may behave very differently.

Summing up the qualitative discussion we conclude that
the entangling power of the evolution[corresponding to
SUsdd averaging] both in terms of the asymptotic value and
the initial growth is the highest for very lowk—ie., for very
regular dynamics.

B. Asymptotic behavior

We give here more detailed results on asymptotic en-
tanglement. In Fig. 3 the asymptotic values of entanglement
are presented for different values ofk. For more credible
results the asymptotic values were obtained as averages of
the linear entropy over the evolution of the tops between
50 000 and 100 000 kicks. Stars correspond to SUsdd aver-
aging while triangles correspond to SU(2) averaging. The
Lyapunov exponent obtained from the classical dynamics of
a single top is shown by the dashed line. For the sake of later
discussion we also included the mean entanglements of
eigenvectors of the evolution operator—denoted by rect-
angles.

In the case of SU(2) averaging, for very low values ofk,
the asymptotic values are high. With the increase ofk they
decrease, reaching minimum fork<1.5, subsequently, with

FIG. 2. The time evolution of the linear entropy averaged over
the ensemble of initial random product statessSSUsddd, with the
probability distribution invariant under the action of the SUsd1d
3SUsd2d group, whered1=2j1+1, d2=2j2+1 are the dimensions of
the subsystems. Different curves correspond to different chaoticity
parametersk of the subsystems(different kick strengths). Spin mag-
nitudes of two interacting tops are taken respectivelyj1=19.5, j2
=20 and the coupling strengthe=0.01. The evolution time com-
prises 1000 kicks. The statistical limit(SL) for entanglement is
drawn with the solid line and corresponds to the average entangle-
ment of a randomly chosen state of the composite system. The
initial entanglement growth is higher for regular dynamics(low k)
than for the chaotic one(high k). While asymptotic values of en-
tanglement are high for chaotic cases, the asymptotic value for the
most regular dynamicsk=0.01 outperforms all other cases.

FIG. 3. This figure presents the dependence of asymptotic val-
ues of entanglement on the chaoticity parameterk. Asymptotic val-
ues of entanglement corresponding to averaging over initial random
product states[the SUsdd averaging] are denoted by stars and
asymptotic values corresponding to the averaging over initial spin-
coherent product states[the SU(2) averaging] are denoted by tri-
angles. The dashed line represents the Lyapunov exponent of the
classical dynamics of a single top. The mean entanglement of eigen-
vectors of the evolution is denoted by rectangles. Statistical limit
(SL) for entanglement is drawn with the solid line and corresponds
to average entanglement of a randomly chosen state of the compos-
ite system. Chaos indeed increases asymptotic value of entangle-
ment in the case of spin-coherent states and, to some extent, also in
the case of random product states; nevertheless very regular regime
k<0 also manifests high asymptotic entanglement which can be
related to high entanglement of eigenvectors.
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the onset of chaos, they increase again and eventually satu-
rate. The saturation value is a little below the statistical limit
(SL).

The SUsdd averaging reveals almost no dependence of the
asymptotic value of entanglement onk. Nevertheless, there is
also a tiny dip aroundk<2 and the entanglement for very
low k is a little bit higher than that for the strongly chaotic
regime.

The behavior of the mean eigenvector entanglement, also
reveals a minimum aroundk<2. Remarkably the entangle-
ment of eigenvectors for very highk is significantly smaller
than asymptotic value of entanglement in this regime.

C. Initial behavior

In order to grasp quantitatively the initial behavior of en-
tanglement, we fit a line to the points representing short-time
entanglement produced for certain value ofk. Although the
character of initial entanglement growth is linear only in the
chaotic regime, while in the regular regime it is quadratic
(see Sec. VI C, we perform the fitting in all regimes. This
gives us a sensible estimate of initial entanglement growth.
The fitting is done for points corresponding to the first 15
kicks. Regression coefficients obtained in this way are shown
in Fig. 4 for both SU(2) and SUsdd averaging, together with
the rescaled Lyapunov exponent of a single top. For high
values ofk both averaging methods give the same results,
which is caused by strong chaos which even during the first
15 kicks is able to turn spin-coherent states into completely
random states. For low values ofk the entanglement produc-
tion rate obtained with the SUsdd averaging outperforms that
of the SU(2) averaging. Furthermore, it is approximately
four times higher than in the strong chaos regime. We shall
now move on to explaining these observations.

VI. THEORETICAL ANALYSIS OF NUMERICAL RESULTS

Before moving on to separate discussions on the
asymptotic and initial behavior of the entanglement produc-

tion, let us first make a general remark which applies to both
cases. Looking at Fig. 3 and Fig. 4 one can notice that when
the chaoticity parameter is largesk.5d differences between
the SU(2) averaging and the SUsdd averaging disappear, both
in results for the asymptotic and the initial behavior. It means
that there is no difference, whether we choose as our initial
states the ensemble of spin-coherent product states or the
ensemble of random product states. Disappearance of the
difference between two averaging methods for highk is due
to strong chaos which very quickly turns initial spin-coherent
states into random pure states. The distinction between two
averaging methods, however, is crucial in mixed and regular
regimes.

A. Entanglement of eigenvectors vs asymptotic values
of entanglement of evolved states

Abstracting for a while from the case of the kicked tops,
let U be a unitary operation acting in a Hilbert spaceH1
^ H2, where dimensions ofH1, H2 are respectivelyd1 and
d2. We denote byueil, fi for i =1. . .d1d2 the eigenvectors and
eigenphases of the operatorU. We assume here that the spec-
trum is nondegenerate. The reduced density matrices of the
eigenvectors after tracing out the second subsystem areri
=Tr2sueilkeiud. As information about entanglement of an ei-
genvector we use again the linear entropy of its reduced den-
sity matrix: Si =1−Trsri

2d. The mean entanglement of eigen-
vectors is given by

S̄eigen= 1 −
1

d1d2
o

i

Trsri
2d. s6.1d

Assume that the initial state of the system isucl. After n
iterations of the operationU the resulting state reads

ucsndl = o
i

expsinfidkeiuclueil. s6.2d

The reduced density matrix of the first subsystem corre-
sponding to this state is given by

rsnd = o
i j

expfinsfi − f jdgkeiuclkcuejlTr2sueilkejud,

s6.3d

the linear entropy of which reads

Srsnd = 1 − Trfrsnd2g = 1 − TrSo
i jkl

expfinsfi − f j + fk − fldg

3keiuclkcuejlkekuclkcuellTr2sueilkejudTr2sueklkeludD .

s6.4d

For the asymptotic behavior of the linear entropy the im-
portant terms in the above formula are those which survive
after the time-averaging. These are the terms in which phase
factors disappear. Other terms oscillate and thus vanish when
averaged over time. The nonvanishing terms correspond to
either i = j , k= l or i = l, k= j . Asymptotic value of linear en-
tropy reads thus

FIG. 4. Dependence of initial entanglement production rate on
the chaoticity parameterk. Results obtained after averaging over
initial random product states[the SUsdd averaging] are denoted by
stars and results due to averaging over initial spin-coherent product
states[the SU(2) averaging] are denoted by triangles. The dashed
line represents the rescaled Lyapunov exponent of the classical dy-
namics of a single top. In the case of random product states the
highest initial entanglement growth corresponds to very regular dy-
namics and diminishes with the increase of the chaoticity parameter
k while in the case of spin-coherent product states it is very regular
dynamics that has the slowest initial entanglement growth.
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Sasymp= 1 − TrSo
i j

ukeiuclu2ukejuclu2rir jD
− TrSo

iÞ j

ukeiuclu2ukejuclu2Tr2sueilkejudTr2suejlkeiudD .

s6.5d

We would like to stress here that the above formula is the
result of the averaging over time of the linear entropy itself.
One could take a different approach and first average over
time the density matrix and than calculate the linear entropy
of the resulting density matrix. Following the second ap-
proach one would not get the third term in the above for-
mula. This difference is important as it is certainly not the
same to calculate the time-averaged entanglement of the
evolved state or to calculate the entanglement of the time-
averaged state. We argue that the first approach reveals better
the entangling properties of the system evolution. One must
admit, however, that in many cases the second approach will
give qualitatively similar results.

We would like now to relate the above formula for the
asymptotic entanglement of an evolved state with the en-
tanglement of eigenvectors. We start by proving the follow-
ing inequalities:

2TrsTr2sueilkejudTr2suejlkeiudd ø Trsri
2d + Trsr j

2d,

s6.6ad

2Trsrir jd ø Trsri
2d + Trsr j

2d. s6.6bd

Proof. We shall prove the first inequality. Let us decom-
pose the eigenvectorueil in a product basis ueil
=on1n2

Cn1n2

i un1l ^ un2l. We can write: Tr2sueilkejud=CiCj†. It
follows that

2TrfTr2sueilkejudTr2suejlkeiudg

= 2TrsCiCj†CjCi†d = 2TrsCi†CiCj†Cjd

ø TrsCi†CiCi†Cid + TrsCj†CjCj†Cjd

= Trsri
2d + Trsr j

2d.

In the derivation above we have made use of the Cauchy-
Schwarz inequality. Assume thatA andB are Hermitian op-
erators. The Cauchy-Schwarz inequality then reads
TrsA2dTrsB2dù fTrsABdg2. Taking into account thatfTrsA2d
+TrsB2dg2ù4 TrsA2dTrsB2d, one arrives at TrsA2d+TrsB2d
ù2 TrsABd. This explains the derivation above and gives Eq.
(6.6a). The proof of the inequality(6.6b) is analogous.

We now return to the formula(6.5). Using the inequalities
(6.6a) and (6.6b) we can write

Sasymp= 1 − TrSo
i j

ukeiuclu2ukejuclu2rir jD − TrSo
iÞ j

ukeiuclu2ukejuclu2Tr2sueilkejudTr2suejlkeiudD ù 1 − TrSo
i j

ukeiuclu2ukejuclu2rir jD
− TrSo

i j

ukeiuclu2ukejuclu2Tr2sueilkejudTr2suejlkeiudD ù 1 − 2o
i

ukeiuclu2Trsri
2d = 2o

i

ukeiuclu2Si − 1,

whereSi is the linear entropy of the eigenstateueil.
We are interested in averaging over initial statesucl which

are either spin-coherent product states or random product
states. Both averaging procedures lead to

kkukeiuclu2llc = 1/d1d2. s6.7d

Finally we arrive at the following relation between mean
asymptotic value of entanglement of evolved states and
mean entanglement of eigenvectors:

S̄asympù 2S̄eigen− 1. s6.8d

This inequality is valid for both the SU(2) averaging and the
SUsdd averaging. Actually, as Eq.(6.7) is valid for any en-
semble of states which give a resolution of identity, so is Eq.
(6.8) valid in all these cases and not only in the case of SU(2)
or SUsdd averaging. This inequality puts the lower bound on
the mean asymptotic entanglement of evolved states, thus a
high entanglement of eigenvectors induce a high mean
asymptotic entanglement of evolved states.

One is not entitled, however, to claim that a low mean
entanglement of eigenvectors implies a low mean asymptotic
entanglement of evolved states(compare Fig. 3). To stress
once again the inadequate information about entangling
properties of a transformation obtained from studying its ei-
genvector entanglement, recall that even when all eigenvec-
tors are product states, a transformation can have a nonzero
entangling power(for example the controlled-phase gate).

This is a good place to comment on our decision to takej1
different from j2. If we took identical spins for the two tops
the degeneracy of eigenvectors would appear. The presence
of degeneracy invalidates the inequality(6.8). In the pres-
ence of degeneracy estimating entangling power from en-
tanglement of eigenvectors can be even more misleading. As
an example consider a local transformationU=U1 ^ U2,
which obviously has the zero entangling power. Letuf1l
^ uf2l and ug1l ^ ug2l be two degenerate product eigenstates.
However, eigenstates in this situation can equally well be
taken as s1/Î2d suf1l ^ uf2l+ ug1l ^ ug2ld and s1/Î2d suf1l
^ uf2l− ug1l ^ ug2ld, which are entangled states. Consequently
calculating numerically eigenstates and their entanglement
we could arrive at the conclusion that the entanglement of
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eigenvectors is high while the transformation itself has the
zero entangling power. Nondegenerate spectrum is thus an
indispensable condition in studying relations between entan-
gling power of a transformation and entanglement of its
eigenvectors.

B. Asymptotic behavior

When explaining the asymptotic value of entanglement of
an evolved state in a system of two strongly chaotic interact-
ing subsystems one can formulate some statistical predic-
tions. One expects that states evolved in such systems tend to
generically random states. This means that writing an
asymptotic state in a product basis:

ucasympl = o
n1n2

an1n2
un1l ^ un2l, s6.9d

one expects the coefficientsan1n2
to be independent random

variables. Depending on the symmetries of the system, one
imposes different restrictions on the coefficients arriving thus
at different state ensembles. It is then possible to calculate
the linear entropy averaged over such ensembles[18,21].

Choosing an ensemble of states which are uniformly dis-
tributed with respect to the action of SUsd1d2d group, one
arrives at averaged linear entropy[21]:

SSL= 1 −
d1 + d2

d1d2 + 1
. s6.10d

Consequently, the above expression is equal to the average
entanglement(measured as linear entropy of reduced density
matrix) of a generically random state of the composite sys-
tem. We shall use this expression, which we call statistical
limit (SL), as a reference for the asymptotic entanglement of
evolved states.

When dimensions of subspaces are similard1<d2<d and
large the statistical limit can be written in a simple form
SSL<1−2/d. Compare this with the limit imposed solely by
the dimensionality of the subspaces:Smax=1−1/d, whered
is the dimension of the smaller subspace.

In Fig. 5 we compare this formula with the values of the
asymptotic entanglement for strong chaosk=6, for different
spin magnitudes of the two tops. There is no difference be-
tween values obtained for the SU(2) and the SUsdd averag-
ing, and both are a little below the statistical limit(SL).
Notice that the eigenvectors entanglement is hardly of any
use here in predictions of the asymptotic entanglement.

We noticed earlier that for low values ofk asymptotic
values of entanglement for the SU(2) and the SUsdd averag-
ing are also very high. In the light of the inequality(6.8) this
is due to the very high entanglement of the eigenvectors of
the evolution operator. Asymptotic entanglements fork
=0.01 are presented in Fig. 6 together with the entanglement
of eigenvectors for a different spin magnitudes. The statisti-
cal limit (SL) (6.10) is also plotted for comparison.

The agreement between the statistical limit(SL) and the
asymptotic values of entanglement of the SUsdd averaging is
purely accidental. This underlines, however, that the regular
regime can be as good(or better) in generating high

asymptotic values of entanglement for random states com-
pared to the strongly chaotic regime. This agrees with the
results in[23], where different approach was taken—no spe-
cific model of dynamics was analyzed but instead the Hamil-
tonians of the subsystems where random matrices chosen
either from chaotic or regular ensembles.

It remains to be explained what is the reason for a very
high entanglement of eigenvectors for low values ofk. This
effect of high entanglement of eigenvectors in the regular
motion regime was also observed in the spin-kicked rotor
system[24] and a mechanism is similar here. We shall give a
qualitative explanation of this effect. For decoupled kicked
topse=0, eigenvectors are product states. For low values of
k there are many states that are nearly degenerate. Addition-
ally, these product states are very close to the product states
of eigenvectors of theJy operator. Indeed fork=0 one time
step of the evolution of the tops is described by the unitary
operator:

FIG. 5. Asymptotic entanglement of evolved states averaged
over initial random product states[the SUsdd averaging, stars] and
over initial spin-coherent product states[the SU(2) averaging, tri-
angles] in the strong chaos regimek=6, calculated for different spin
magnitudesj . Spins of the tops are chosenj1= j and j2= j +1/2.
Rectangles denote values of mean entanglement of eigenvectors.
The statistical limit(SL) for entanglement is drawn with the solid
line and corresponds to average entanglement of a randomly chosen
state of the composite system. A big discrepancy is visible between
the asymptotic entanglement of evolved states and the mean en-
tanglement of eigenvectors.

FIG. 6. Asymptotic entanglement of evolved states in the case
of averaging over initial random product states[SUsdd averaging,
stars] and in the case of averaging over initial spin-coherent product
states[SU(2) averaging, triangles] in the regular regimek=0.01,
calculated for different spin magnitudesj . Spins of the tops are
chosen: j1= j and j2= j +1/2. Rectangles denote values of mean
entanglement of eigenvectors. Statistical limit(SL) for entangle-
ment is drawn with a solid line and corresponds to average en-
tanglement of a randomly chosen state of the composite system.
Thanks to inequality(6.8) high entanglement of eigenvectors is an
indicator of high asymptotic entanglement for both averaging
procedures
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U0 = exps− ipJy1
− ipJy2

d, s6.11d

so eigenvectors can be chosen asuy1,y2l, the product states
of the eigenvectors ofJy operator. There are many degener-
ate eigenvectors ofU0, for example, u−j , jl , u−j +1,j
−1l , . . . ,u j ,−jl. These are 2j +1 states with the eigenphase 0
(for simplicity we have assumedj1= j2 and the value of the
spin to be integer). Additionally there will be also groups
consisting of 2j ,2j −1, . . . ,1 degenerate states. The coupling
term exps−eJz1Jz2d, expanded to the first order ine, will
couple the stateuy1,y2l with the states of the formuy1
−1,y2+1l, uy1+1,y2−1l, uy1+1,y2+1l, uy1−1,y2−1l (as Jz
is a sum of lowering and rising operators in the basis ofJy
eigenvectors). A weak coupling between nondegenerate
states will not cause much change in the form of eigenvec-
tors. Letuvil be the set of degenerate eigenvectors ofU0. Due
to the coupling, new eigenvectors will be obtained by diago-
nalizing a matrix of the approximately following form:

3
p e 0 ¯

e p e ¯

0 e p ¯

] ] ] �

4 .

Eigenvectors of such a matrix have large contributions from
many different vectorsvi; in our case it means that in every
subspace of degenerate product eigenvectors new highly en-
tangled eigenvectors will emerge due to the weak coupling.

C. Initial behavior

The initial entanglement growth in the system of coupled
kicked tops can be well understood with the help of the
perturbation theory developed in[7,10].

It should be clarified here that, although the two papers
[7,10] contain similar results, the motivation and the scope of
their work is a bit different. The main motivation of the work
by Fujisakiet al. [7] is to study entanglement production in
weakly coupled chaotic systems and as a model they con-
sider the coupled kicked tops. This is also the approach we
take in this article. On the other hand, Žnidarič and Prosen
consider a problem of stability of quantum dynamics of a
composite system with respect to weak interaction between
two subsystems. They consider different quantities reflecting
the stability of quantum motion such as fidelity, reduced fi-
delity, and purity fidelity, and analyze their behavior under
regular or chaotic dynamics for different times of evolution
(comprehensive study of the problem of stability of quantum
dynamics can be found in[25]); see also[8,9,26]). Because
the linear entropysSd, which is used as a measure of en-
tanglement in[7] and in the present work, is related to the
purity fidelity sFPd by the formulaS=1−FP, there is a close
relation between results obtained in[7,10].

The essential quantity for understanding initial entangle-
ment growth is the product of the time correlation functions
of uncoupled subsystems:

Dsn,md = C1sn,mdC2sn,md, s6.12d

where the correlation function of an uncoupled subsystem is
defined

Cisn,md = kẑisndẑismdl − kẑisndlkẑismdl, s6.13d

andẑismd=Jzi
smd / j i. The Heisenberg picture is used here and

Jzi
snd denotes the operator of projection of the angular mo-

mentum on thez axis at timen for the subsystemi (after the
nth kick of uncoupled evolution).

The perturbation formula for the initial behavior of the
linear entropy reads

Sperturbstd = 2e2j1j2o
n=1

t

o
m=1

t

Dsn,md. s6.14d

For strong chaos one can neglect the terms withnÞm, as
any correlation is quickly washed out. Forn=m due to the
chaotic character of the motionDsn,nd<1/9 and does not
depend onn [7] (more detailed analysis of the behavior of
the correlation function can be found in[6–8,10]). Finally
for strong chaos one obtains that the initial growth of linear
entropy is linear, and the rate of the growth is given by

dSperturb

dt
=

2

9
e2j1j2. s6.15d

This formula is valid for any initial state, actually not from
the very beginning of the evolution, but only after a short
relaxation time when the linear growth of the linear entropy
emerges. In our case the linear growth appears very quickly,
after the first few kicks.

The comparison of the above formula with the initial en-
tanglement growth rate corresponding to the SU(2) and the
SUsdd averaging, in the case of strong chaosk=6 is shown in
Fig. 7. The agreement is good and, due to strong chaos, there
is no significant difference between two ensembles.

In the regular regime, the formula(6.14), yields initial
quadratic increase of linear entropy, due to nonvanishing cor-
relations Csn,md for nÞm [7,9]. In this regime there is
qualitatively different behavior of linear entropy increase be-
tween SU(2) and SUsdd averaging(see Fig. 4).

FIG. 7. Initial entanglement growth rates averaged over initial
random product states[the SUsdd averaging, stars] and initial en-
tanglement growth rates averaged over initial spin-coherent product
states[the SU(2) averaging, triangles]. The results are obtained in
strongly chaotic regimek=6 and for different spin magnitudesj .
The spins of the tops differ by 1/2:j1= j and j2= j +1/2. Thepre-
diction of perturbative formula(6.15) is drawn with the solid line.
Due to strong chaos there is no significant difference between the
spin-coherent and the random states.
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In order to explain the difference we have to estimate
values of the correlation functionsCsn,md averaged over the
SU(2) and SUsdd ensembles of initial states. Notice the fol-
lowing formulas for a particle with spinj :

E dmSUs2dkcuJz
2ucl =

js j + 1d
3

, s6.16ad

E dmSUs2dkcuJzucl2 =
j2

3
, s6.16bd

E dmSUsddkcuJz
2ucl =

js j + 1d
3

, s6.16cd

E dmSUsddkcuJzucl2 =
j

6
, s6.16dd

where d=2j +1 is the dimension of the particle’s Hilbert
space. Proofs of these formulas are given in the Appendix.
The same equations can be written whenJz is replaced by
eitherJy or Jx. If, however,kcuJz

2ucl is replaced by a mixed
term—for examplekcuJzJxucl—the integrals (6.16a) and
(6.16b) vanish. The same happens if in the integrals(6.16b)
and(6.16b), the termkcuJzucl2 is replaced by a mixed term—
for examplekcuJzuclkcuJxucl.

In the most regular casesk=0.01d the evolution of a single
top is mostly determined by its free rotation aroundy axis.
Each period corresponds to ap /2 rotation. Consequently in
the Heisenberg picture operatorJz evolves approximately in
the following way:Jzs1d<Jx, Jzs2d<−Jz, Jzs3d<−Jx, Jzs4d
<Jz, . . . . Thevalue of the correlation at equal timesCsn,nd
is just the dispersion ofJzsnd operator. In the case of the
SU(2) averaging this will be proportional to the difference of
integrals(6.16a) and(6.16b) and thus proportional to 1/j . In
contrast,Csn,nd for the SUsdd averaging is proportional to
the difference of integrals(6.16c) and (6.16d) and thus pro-
portional to 1—the same order of magnitude as in the chaotic
case. The same fact will hold for correlation functions calcu-
lated for times differing by even number of kicks, whereas
correlation functions calculated for times differing by odd
number of kicks will be zero. AsDsn,md is a product of two
correlation functions for the two tops, it will be approxi-
mately j1j2 times greater for the SUsdd averaging than for the
SU(2) averaging. In the case we consider, this amounts to the
ratio of initial entanglement production rate of approximately
400. This explains the strikingly different behavior of the
initial entanglement growth for two considered kinds of av-
eraging in for thek=0.01 case. Different character of en-
tanglement production rate for coherent and random states
was also noticed in[9].

SUsdd averaging reveals decrease in the initial entangle-
ment growth rate with the increase of chaoticity parameterk
As the states we average over the ensemble of random states
invariant under the action of SUsdd, the increase of param-
eterk does not change the value of the dispersion ofJz op-
erator; thusCsn,nd does not depend onk. At the same time
the increase ofk decreases correlation for different times

Csn,md snÞmd, and consequently the increase of the chao-
ticity parameter checks initial entanglement growth.

In the case of SU(2) averaging, consequences of the in-
crease of the chaoticity parameter are twofold. On the one
hand the increase of chaos decreases correlationsCsn,md for
nÞm, and in this way transforms initial entanglement
growth character from quadratic to linear. On the other hand,
it drives well-localized spin-coherent states into more
smeared states with larger dispersion ofJz operator, which
results in the increase ofCsn,nd function calculated at equal
times. Depending on the specific values of parameters of the
system:j1, j2,e, one of theses factors may bare grater signifi-
cance, and it may happen, that the increase of chaos corre-
sponds to either the increase or decrease of initial entangle-
ment growth(see for example numerical results in[12] for
different values ofe parameter). We chose the parameters
that reveal the increase of entanglement growth with grow-
ing k for SU(2) averaging in order to contrast this with the
behavior of entanglement growth in the case of SUsdd aver-
aging, as for the latter case the increase of chaosalways
diminishes initial entanglement growth.

VII. CONCLUSIONS

In this paper, the problem of the interplay between en-
tanglement production in a quantum system and its chaotic
properties was analyzed using the model of the coupled
kicked tops.

Entangling properties of the coupled kicked tops system
were investigated by observing the evolution of two different
ensembles of product states. Considerations of ensembles
consisting either of product spin-coherent states[SU(2) av-
eraging] or random product states[SUsdd averaging] lead to
qualitatively different results in terms of the initial entangle-
ment production rate and the asymptotic entanglement of
evolved states. The asymptotic values of entanglement are
high in a strongly chaotic regime(high kick strength), still
they are even higher for a very regular regime(low kick
strength), and reach minimum for the parameters of the evo-
lution that correspond to the onset of chaos.

The SU(2) averaging reveals strong dependence of the
asymptotic value of entanglement on the kick strength, while
asymptotic values obtained after the SUsdd averaging are
quite insensitive to variation of this parameter. This is due to
more classical nature of spin-coherent states, which “feel”
more directly the transition form regular to chaotic dynamics
in the classical motion. In the case of the SUsdd averaging,
the classical transition from regular to chaotic motion has
only minor influence on the asymptotic value of entangle-
ment.

In order to gain a deeper understanding of the problems,
the asymptotic entanglement behavior was related to the
mean entanglement of eigenvectors of the transformation.
We have proved an inequality relating these two quantities.
We have also pointed out cases where these quantities differ
strongly and one is not entitled to infer anything about one of
them from the value of the other.

Finally we have studied the averaged initial entanglement
production rate. The striking difference between the SU(2)
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and the SUsdd averaging was explained with the help of the
perturbation theory[7,10]. In the regular regime spin-
coherent product states become entangled much slower than
random product states, due to a significantly smaller value of
averaged variances of angular momentum components.

Regular to chaotic transition can indeed be observed in
the global entangling properties of the kicked tops. These
manifestations, however, are different depending on the en-
sembles of states considered. When considering random
product states the increase of the chaoticity parameter always
diminishes initial entanglement growth. For spin-coherent
states increase of chaos results in two competing tendencies:
chaos drives coherent states into more delocalized states and
thus helps entanglement growth, but on the other hand it
destroys time correlations in subsystems, which checks en-
tanglement growth. We chose parameters of the evolution in
which first tendency prevailed and thus contrasted the behav-
ior of spin-coherent vs random states.

When discussing asymptotic entanglement we have ob-
served that both purely regular and strongly chaotic regimes
enjoy a very high asymptotic entanglement. Reasons for high
asymptotic entanglement in regular and chaotic cases are dif-
ferent. In the chaotic case, chaotic dynamics in subsystems
allows for a coupling of arbitrary states and consequently an
initial product state can become highly entangled as the dy-
namics is able to penetrate Hilbert space of the composite
system with almost no constraints. In the regular case evolu-

tion of a state is much more restricted, but in the system of
coupled kicked tops, due to a very high entanglement of
eigenvectors[see inequality(6.8)] the asymptotic entangle-
ment is also very high.
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APPENDIX: DERIVATION OF FORMULAS (6.16)

Formulas(6.16a) and(6.16c) can be explained using sym-
metry arguments. If instead ofJz

2, we tookJ2=Jx
2+Jy

2+Jz
2, the

mean valuekcuJ2ucl= js j +1d, for any state. Both SU(2) and
SUsdd averaging do not distinguish any direction in space.
Consequently averages ofJx

2, Jy
2 and Jz

2 should be equal. In
order to sum up tojs j +1d for J2 operator each of these av-
erages must be equaljs j +1d /3

Let us now prove formula(6.16b). A spin-coherent state
can be obtained as a rotation ofu jl state:uu ,fl=Rsu ,fdu jl.
This allows us to write

E dmSUs2dkcuJzucl2 =
1

4p
E dudf sinsudku,fuJzuu,fl2 =

1

4p
E dudf sinsudk− j uRsu,fd†JzRsu,fdu − jl2

=
1

4p
E dudf sinsudk− j uJz cossud + Jx sinsudcossfd − Jy sinsudsinsfdu − jl2

=
1

4p
E dudf sinsudcos2sud j2 =

j2

3
.

The proof of formula(6.16d) requires a little more effort.
An arbitrary stateucl can be written asucl=om=−j

j amuml,
wheream=xm+ iym are complex coefficients. The SUsdd av-
eraging overucl results in a random distribution ofam coef-
ficients with the probability distribution:

Psa−j, . . . ,ajd = Psx−j,y−j, . . . ,xj,yjd =
s2jd!
p2j+1dS1 − o

m=−j

j

xm
2

− o
m=−j

j

ym
2D .

Marginal distributions can be calculated from the above for-
mula. In what follows we shall need the two lowest marginal
distributions ofP, i.e., P1sxd andP2sx,yd [27]:

P1sxd =
1

Îp

Gs2j + 1d

GS2j +
1

2
D s1 − x2d2j−1/2,

P2sx,yd =
s2jd!

p
s1 − x2 − y2d2j−1.

Note also the following equalities:

E dx x4P1sxd =
3

8s j + 1ds2j + 1d
, sA1ad

E dxdy x2y2P2sx,yd =
1

8s j + 1ds2j + 1d
. sA1bd

We are now prepared to prove formula(6.16d):
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E dmSUsddkcuJzucl2 =E da−j ¯ dajPsa−j, . . . ,ajdS o
n=−j

j

an
*knuJz o

m=−j

j

amumlD2

=E da−j ¯ dajPsa−j, . . . ,ajdS o
m=−j

j

uamu2mD2

=E da−j ¯ dajPsa−j, . . . ,ajd o
m=−j

j

o
n=−j

j

uamu2uanu2mn.

Only the terms with eithern=m or n=−m contribute, as all others cancel out:

E da−j ¯ dajPsa−j, . . . ,ajd o
m=−j

j

uamu4m2 − o
m=−j

j

uamu2ua−mu2m2

=E dx−jdy−j ¯ dxjdyjPsx−j,y−j, . . . ,xj,yjd o
m=−j

j

sxm
4 + ym

4 + 2xm
2 ym

2 dm2 − o
m=−j

j

sxm
2 + ym

2 dsx−m
2 + y−m

2 dm2

= S2E dx x4P1sxd − 2E dxdy x2y2P2sx,ydD o
m=−j

j

m2 =
1

2s j + 1ds2j + 1d
js j + 1ds2j + 1d

3
=

j

6
.
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